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ABSTRACT

In this work we propose a reversible Markov chain scheme to model for the mobility

of students affected by a grade school leveling policy. This model provides unified

and mathematically tractable framework in which transition functions are sampled

uniformly from the set of reversible transition functions. The results from the study

appear to confirm the disadvantageous effects of this school policy, on par with the

of a previous model on the same policy.
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Chapter 1

Introduction

1.1 Background

In 2017, Pittsburgh Arlington PreK-8 implemented a disciplinary policy in which students

are sorted into three different categories: red, yellow, and green based on their behaviors

and performance. Examples of behaviors that would earn students the title of green include

following instructions and attending class more than 95% of the time. Examples of red

behaviors include insubordination and attending class less than 90% of the time. Students

in the yellow category are in between the red and green categories. The faculty at Pittsburgh

Arlington PreK-8 evaluate the behavior and performance of each individual every two weeks

in order to place each individual in their respective category [Mur18].

The policy further stipulates that each student will be required to wear an armband

that publicizes the color category that they are placed in. This prompted research into

the potential long-term outcome of such a policy, in that we wanted to know how many

students would end up in the red category as time approaches infinity [Mur18].
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1.2 Mathematical Models

Previous work on this policy informed the construction of a mathematical model for the

Pittsburgh Arlington PreK-8 leveling system, considering it as a 3-state discrete-time ho-

mogeneous Markov chain, with the three states being the red, yellow, and green categories.

This model by definition assumes that the students move through the categories probabilis-

tically, and the probability of going from one category to another category depends only on

the student’s placement in the previous two-week period.

The ergodic theorem for Markov chains is applicable in this case. In particular, as the

length of the time interval observed tends to infinity, the proportion of times a student (or

any given group of students)

• spends in a category A, tends to π(A);

• moves from category A to category B, relative to the number of times the student is

in category A, tends to pA,B.

These facts are of high empirical significance as they allow to estimate the unknown π and

p from (a large number of) observations [Mur18].

Because the policy was implemented so recently, the data on the average proportion of

individuals moving from category to category was not available. Furthermore, it was likely

not being recorded at all, and even if it were, it would not be up for disclosure to the public.

In order to counteract this obstruction, we made simplifying assumptions to reduce the

number of unknown transition probabilities. We also assumed that the transition proba-

bilities were themselves random variables. We assumed that the transition matrix of the

Markov chain was regular, and thus converged to a unique stationary distribution indepen-

dent of the initial conditions. In fact, assuming that the transition probabilities are repre-

sented by continuous random variables, the probability of obtaining a non-regular transition

matrix is equal to zero. By treating the transition probabilities as random variables, we
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were able to find numerically the probability that the stationary distribution would have

more than 10% of students in the red category in the long term [Mur18].



Chapter 2

Our work

In this work we operate under a similar assumption that the movement of students through

the different color categories represents a three-state, discrete-time Markov chain. We

furthermore maintain the assumption transition probabilities are random variables. We

introduce a different assumption that the Markov Chain is reversible (generalization of

symmetric, see Section 2.2). This latter assumption leads to relatively simple and explicit

formulas for the stationary distribution and other quantities, allowing for a more detailed,

rigorous analysis of time-evolution.

Many processes in physics and biology, such as the path of a pollen particle in a breeze

can be modeled as a reversible Markov chain, so it is a reasonable assumption that this

Markov chain might be reversible too.

2.1 Reversibility

Let p = (pi,j) be a transition function of a Markov chain on the state-space S = {1, . . . , N}.

That is, pi,j is the probability of transition from i to j. If X = (Xn : n ∈ Z+) is a Markov

4
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chain with transition function p, then

P (Xn+1 = j|Xn = in, Xn−1 = in−1, . . . , X0 = i0) = pi,j .

Definition 2.1.1. The transition function p is reversible, if there exists a nonnegative

function π : S → R, not identically zero, such that

π(i)pi,j = π(j)pj,i,

for all i, j ∈ S.

In what follows we will always assume the function π, if exits, is normalized to be a

probability measure, i.e. : ∑
i

π(i) = 1.

Proposition 2.1.2. If p is reversible with the function π. Then π is a stationary distribu-

tion for p.

Proof. We need to show

π(j) =
∑
i

π(i)pi,j .

By the reversibility assumption, each summand on the righthand side is equal to π(j)pj,i,

therefore the righthand side is equal to

∑
i

π(j)pi,j = π(j),

because p is a transition function and so
∑

i pj,i = 1.

For example, any symmetric transition function (i.e. pi,j = pj,i) is reversible with π

being uniform. The converse is not true. Indeed, it is an easy exercise to see that any tran-

sition function on two states which is strictly positive off the diagonal (i.e. p1,2, p2,1 > 0)
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is reversible, but clearly not every such transition function is symmetric. On more than

two states, reversibility is, of course, harder to achieve. As an example, consider the tran-

sition matrix


0.90 0.05 0.05

0.20 0.55 0.25

0.15 0.75 0.10

 has stationary distribution π =

[
0.616 0.081 0.302

]
.

However, we observe that 0.05(0.081) 6= 0.20(0.616).

The following explains why we refer to chains that obey Definition 2.1 as “reversible”:

Theorem 2.1.3. Let X be a Markov chain with transition function p and stationary

distribution π. Then p is reversible with π if and only if the distribution of the vectors

(X0, . . . , Xn) and (Xn, 0, . . . , X0) are the same when X0 is π-distributed.

Proof. [Dur11]. Fix n and let Ym = Xn−m for 0 ≤ m ≤ n. Then Ym is a Markov chain with

transition probability

p̂i,j = P (Ym+1 = j|Ym = i) =
π(j)pj,i
π(i)

To show this, we compute the conditional probability.

P (Ym+1 = im+1|Ym = im, Ym−1 = im−1...Y0 = i0)

=
P (Xn−(m+1) = im+1, Xn−m = im, Xn−m+1 = im−1...Xn = i0)

P (Xn−m = im, Xn−m+1 = im−1...Xn = i0)
.

Using the Markov property, the numerator is equal to

π(im+1)pim+1,imP (Xn−m+1 = im−1, ...Xn = i0|Xn−m = im).

Similarly the denominator can be written as

π(im)P (Xn−m+1 = im1, ...Xn = i0|Xn−m = im).
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Dividing the last two formulas and noticing that the conditional probabilities cancel we

have

P (Ym+1 = im+1|Ym = im, ...Y0 = i0) = π(im+1)pim+1,im(im).

This shows Ym is a Markov chain with the indicated transition probability.

Corollary 2.1.4. An irreducible three-state Markov Chain is reversible iff

p1,2p2,3p3,1 = p3,2p2,1p1,3 > 0. (2.1.1)

Proof. Going in the forward direction, we have

π(1)p1,2 = π(2)p2,1

π(2)p2,3 = π(3)p3,2

π(3)p3,1 = π(1)p1,3,

with π(i) > 0 for all i. Multiplying the elements in right column and all elements in left

column, then dividing by π(1)π(2)π(3) gives (2.1.1). To prove the reverse direction, let

π(3) = c for some c to be determined later, π(2) = π(3)
p3,2
p2,3

and π(1) = π(2)
p2,1
p1,2

. Note that

the definitions of π(3), π(2) satisfy the second equality, and those of π(2) and π(1) satisfy

the first equation. Finally,

π(1) = π(3)× p3,2
p2,3︸ ︷︷ ︸

=π(2)

× p2,1
p1,2

= π(3)× p3,2p2,1p1,3
p2,3p1,2p3,1︸ ︷︷ ︸

=1

p3,1
p1,3

,

satisfying the third equation. All that remains is to normalize, i.e. divide π by
∑n

i=1 π(i)

Corollary 2.1.5. The stationary distribution π =

[
π(1) π(2) π(3)

]
of a 3-state discrete
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time reversible Markov chain is given by

π(1) =
1

p1,2
p2,1

+
p1,3
p3,1

+ 1
,

π(2) =
p1,2
p2,1

π(1),

π(3) =
p3,1
p1,3

π(1).

This follows directly from Definition 2.1.1

2.2 Symmetric and Reversible

Readers who are interested in the connection between symmetric matrices and reversible

transition functions may find the following section noteworthy. Our main work will resume

in Section 2.3.

We’ve stated that Markov chain with transition function p is called reversible if there

exists a positive function π such that

π(i)pi,j = π(j)pj,i for all i, j. (2.2.1)

Condition (2.2.1) is known as the detailed balance condition. Every irreducible Markov

chain on two states is reversible, but this is not the case for three-state Markov chains as

demonstrated in Section

Clearly every symmetric matrix satisfies the ance condition with constant π. As for a
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partial converse, suppose that p satisfies the ance condition with π, and let D = diag(π)

(D1/2pD−1/2)(i, j) = π1/2(i)pi,jπ
−1/2(j)

= π−1/2(i)pj,iπ
1/2(j)

= (D−1/2ptD1/2)(i, j)

= (D1/2pD−1/2)t(i, j).

In other words, D1/2pD−1/2 is a nonnegative symmetric matrix, but not necessarily a tran-

sition function. In addition, π1/2 is a positive eigenvector (both left and right due to

symmetry) with eigenvalue 1. Reversing the process, starting with a positive symmetric

matrix q with a strictly positive eigenvector ρ corresponding to eigenvalue 1, one obtains a

transition function p satisfying the ance condition by letting E = diag(ρ)

p = E−1qE.

Indeed, p(i, j) = ρ−1(i)q(i, j)ρ(j), so
∑

j p(i, j) = 1, and

ρ2(i)p(i, j) = ρ(i)q(j, i)ρ(j) = ρ2(j)p(j, i),

therefore p satisfies the ance condition with π = ρ2.

Summarizing, we have shown the following correspondence between symmetric matrices

with nonnegative entries and reversible transition functions. This is a theoretical tool that

can be used for generating reversible transition functions from the larger class of symmetric

matrices. Due to the specificity of our main problem we did not use it, and rather obtained

a concrete construction described in Section 2.4.

Proposition 2.2.1. 1. Suppose p and π satisfy the detailed balance condition (2.2.1).

Let D = diag(π).
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2. Suppose that q is a symmetric matrix with nonnegative entries and a strictly positive

eigenvector ρ corresponding to the eignevalue 1. Let E = diag(ρ). Then p = E−1qE

is a reversible transition function and satisfies the ance condition with π = ρ2.

2.3 Our Model

Our goal is to sample a reversible transition function uniformly. This is obtained as follows.

Let P be the uniform measure on transition functions. If we condition P on the event

R = {reversible}, then the conditional measure Q, given by P(·|R) is the uniform measure

on the set of reversible matrices.

We first explain how we construct the measure P, the uniform measure on transition

matrices. Next we restrict P to R, and then normalize.

The transition matrix for a 3-state reversible Markov chain has 5 degrees of freedom.

The transition matrix for any 3-state discrete time Markov chain has 9 entries. Because

each row must sum to 1, this fixes the value of exactly one entry in each row if the other

two entries per row are chosen randomly. We can assume without loss of generality that

these determined entries are the diagonal. This gives six total degrees of freedom.

Of the six remaining entries, they must be chosen to satisfy the detailed balance condi-

tion (2.1.1). Once five of those entries are chosen randomly, the sixth entry is determined.

Without loss of generality, we can assume the determined entry to be p3,2.

Thus a transition matrix for a 3-state discrete time Markov chain has five degrees

of freedom. And we must assign five random variables to these degrees of freedom to

successfully sample a random reversible transition matrix. Our algorithm for uniformly

sampling a reversible transition matrix is described in Section 2.4
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2.4 Algorithm for Sampling a Reversible Transi-

tion Matrix Uniformly

Here is the algorithm we constructed. A code for MATLABTM implementing the algorithm

is given in Chapter 3.

1. Randomly chooses p1,2 and, p2,1 from a uniform distribution on (0,1).

2. Randomly chooses p1,3 and p2,3 from a uniform distribution on (0, p1,2) and (0, p2,1)

respectively. This is such that p1,2 and p1,3 are uniformly distributed over all the

possible values in a valid transition matrix, i.e. {(x, y) ∈ (0, 1)2 : x+ y < 1}.

3. Sets p1,1 to 1 - p1,2 - p1,3 and p2,2 to 1 - p2,1 - p2,3 so that the row sums in row 1 and

2 are equal to 1.

4. We recall that this transition matrix has five total degrees of freedom. We have

already set four (i.e. p1,2, p1,3, p2,1, p2,3)

It is important to note that p3,1 cannot be chosen uniformly distributed on (0,1), as

was p1,2 and p2,1

We need that 0 < p3,1 + p3,2 < 1.

But by (2.1.1), Let α :=
p1,2p2,3
p2,1p1,3

=
p3,2
p3,1

Thus p3,1α = p3,2. Substituting this back in

to the row sum restriction, we have

0 < p3,1 + αp3,1 < 1

or 0 < p3,1 <
1

1+α

And we see that the necessary distribution of p3,1 is uniform on (0,
p2,3p1,2

p2,3p1,2+p1,3p2,1
)

and we set p3,2, which is determined by the previous entries to be
p1,2p2,3p3,1
p2,1p1,3

5. Sets p3,3 to 1 - p3,1 − p3,2

6. Calculates the stationary distribution π according to Corollary 2.1.5.
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7. The entries in the third row are distributed more strictly than the entries in the

second and first row. To overcome this, we generate a random permutation π′ of the

entries in π

8. Repeats steps 1-8 for a given number of times. In our simulation, we generated 105

such matrices.

9. Plots various charts with the frequencies of π(r)′, π(y)′, and π(g)′

We also did a similar simulation with unrestricted, randomly generated transition func-

tions chosen uniformly from the set of 3 × 3 transition functions as a control. The results

below are computed with 1015 such transition functions.
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2.5 Data

Figure 2.5.1

Figure 2.5.2
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Figure 2.5.3

Figure 2.5.4
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Figure 2.5.5

Figure 2.5.6
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2.6 Observations

Figure 2.5.1 is a plot of the empirical joint distribution of π(2) and π(3). The distribution

is not uniform, and more dense around near the corners (0,0), (0,1) and (1,0). Figure 2.5.2

is the empirical density for π(1), π(2), π(3) all of which are identical. The distribution is

not uniform and is most dense near the extreme values 0 and 1, with highest density near

zero. Figure 2.5.3 is a scatter plot with the same information as Figure 2.5.2.

Figures 2.5.4 and 2.5.5 show the same data for the unrestricted transition functions. The

convergence to the true PDF of each π(i) was slower, but appears to be more concentrated

near 0.3.

In the context of the leveling policy, the empirical probability that in the long term at

least 10% of the students are in the red state is around 49%, much lower than previous

results, due high density near zero. The probability of the same event for the unrestricted

transition function was found to be approximately 89%.

2.7 PDF of Marginal Distribution of π(i)

As demonstrated by Figure 2.5.2, the PDF of each π(i) appears to tend to infinity near 0.

To verify this, we assume that between 10−6 and 10−2 the PDF has the form f(x) = kx−β

for some k, β ∈ (0,∞). The CDF is therefore F (x) = kx1−β/(1− β), where x represents a

certain value for a stationary distribution, and F (x) represents the proportion of stationary

distributions less than that value (for a certain color category i). Taking the logarithm of

both sides yields ln(F (x)) = (k + β − 1) + (1 − β) ln(x) which is a linear relationship. A

least-squares regression line for ln(x) vs. ln(F (x)) obtained from the algorithm in Section

2.4 is shown in Figure 2.5.6. By calculating the least-squares linear model, we see that the

value of β is 3.02, which explains that the PDF of the marginal distribution of each π(i)

tends to ∞ as predicted.
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2.8 Statistics

We shall assume that the true long term proportion of students in the red category is

some value π(r0). Because of the large sample size (105), we are justified in assuming

that the value π(r) realized in the algorithm (in this case 0.49) above is sampled from a

normal distribution with mean π(r0) and standard deviation
√
π(r0)(1− π(r0))10−5. To

estimate the true value π(r0), we construct a 95% confidence intervals centered around

π(r0) with 0.49 as a left endpoint and solve for the appropriate value of π(r0) (which is

calculated as solving π(r0) + Φ−1(0.025)
√
π(r0)(1− π(r0))10−5 = 0.49 for π(r0). Here

Φ(t) represents the cumulative distribution function of a standard normal random variable.

We do the same with 0.49 as a right endpoint (which is calculated as solving π(r0) +

Φ−1(0.975)
√
π(r0)(1− π(r0))10−5 = 0.49 for π(r0). Doing this we observed that with 95%

confidence, 0.4868 ≤ π(r0) ≤ 0.4932. This process was also done for the value 0.89 realized

under the unrestricted transition function assumption. The true value of π(r0) in this case

was found within machine precision to be exactly 0.89, due to the high sample size of 1015.

2.9 Discussion

This model is again, one of many possible models to use to describe the movement of Pitts-

burgh Arlington PreK-8 students. The results obtained from this algorithm do demonstrate

that there exists a non-negligible probability that a non-neglibible proportion of students

in the long run will be placed in the red category, in both the reversible and unrestricted

models.

Another model to investigate is a Polya’s Urn Model, which is often described as a self-

reinforcing stochastic process, in that it has the property that if a certain event is observed,

the conditional probability that the same event is observed again is higher than if the event

had not been observed. This model is useful if we would like to make the assumption that
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the longer an individual spends in a given colored category, the higher the probability that

that individual stays in that category. It can be shown that the relative proportion of each

color in the urn approaches a limiting distribution, with this distribution being randomly

distributed. Thus an individual seeking to model the Pittsburgh Arlington leveling policy

may wish to find the expectation of a certain distribution, and draw conclusions about the

efficacy of the policy from that.

Polya’s Urn can be rigorously defined by the following:

Let

• N, k ∈ N

• BN = {1, 2, ...N}, Ck = {1, 2, ...k}

• f : BN → Ck be a surjection

• ci := #{x ∈ BN : f(x) = i, i ∈ Ck}, i.e. the cardinality of the pre-image of i.

Polya’s Urn scheme on N balls and k colors is a Markov chain {Xn}n∈N ∈ Zk+ −

{(0, 0, . . . , 0)}, with the following transition probabilities:

P (Xn+1(i) = m|Xn) =
Xn(i)

N + n
δm,Xn(i)+1.

Where δm,Xn(i)+1 = 1 if Xn(i) + 1 = m, or 0 if Xn(i) + 1 6= m



Chapter 3

Code

This is the MATLABTM code implementing the algorithm in Section 2.4. THe code contains

three files listed in the following sections. It can be downloaded from the link below.

https://www.dropbox.com/sh/5jys7cpru0us396/AAA-puOS-sT40oVR_tkvosTza?dl=0

Samples reversible transition functions

File: revmatrix.m

function [ percentage , p i r ] = revmatr ix (maxit , nbins , t ake l og )

%i n i t i a l counters

i t =1;

%i n i t i a l graph s l o t s

p l o t s=zeros (3 , maxit ) ;

while i t<maxit

%bu i l d t r an s i t i o n matrix T using random va r i a b l e s x1−x9

19
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x2=rand ( 1 , 1 ) ;

x4=rand ( 1 , 1 ) ;

x3=rand(1 ,1)∗(1−x2 ) ;

x6=rand(1 ,1)∗(1−x4 ) ;

x7=rand (1 , 1 )∗ x6∗x2 /( x6∗x2+x3∗x4 ) ;

x8=x3∗x4 /( x2∗x6 ) ;

x9=1−x7−x8 ;

x5=1−x4−x6 ;

x1=1−x2−x3 ;

%bu i l d s t a t i ona ry d i s t r i b u t i o n

p2= x3∗x8 /( x6∗x7 ) ;

p3 =x6∗x2 /( x4∗x8 ) ;

p1 = 1+ p2 + p3 ;

p2 = p2 / p1 ;

p3 = p3/p1 ;

p1 = 1/p1 ;

pi=[p1 p2 p3 ] ;

pi=pi (randperm( length (pi ) ) ) ;

%assembles pi ’ s in to a matrix

p l o t s ( : , i t )=pi ’ ;

i t=i t +1;

end

%p l o t s
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%f ind s percent o f s tuden t s in the red category

counter = 0 ;

for i = 1 : length ( p l o t s ( 1 , : ) )

i f p l o t s (1 , i )>0.10

counter = counter + 1 ;

end

end

percentage = counter / length ( p l o t s ( 1 , : ) ) ;

p i r = p l o t s ( 1 , : )

%separa t e s the t o t a l s t a t i ona ry d i s t r i b u t i o n s in to red , green , and ye l l ow

xax i s = 1/ nbins ∗ ( 1 : nbins ) ;

datared = histogram ( p l o t s ( 1 , : ) , nbins ) ;

r eds = datared . Values ;

dataye l low = histogram ( p l o t s ( 2 , : ) , nbins ) ;

ye l l ows = dataye l low . Values ;

datagreen = histogram ( p l o t s ( 3 , : ) , nbins ) ;

g reens = datagreen . Values ;

r edye l l ow = h i s t 3 ( p l o t s ( 1 : 2 , : ) ’ , [ nbins nbins ] ) ;

%You can take the logar i thm of the data i f i t seems to spread out

i f take l og == 1

reds = log ( reds+ones ( nbins , 1 ) ’ ) ;

y e l l ows = log ( ye l l ows+ones ( nbins , 1 ) ’ ) ;

g reens = log ( g reens+ones ( nbins , 1 ) ’ ) ;

r edye l l ow = log ( r edye l l ow+ones ( nbins , nbins ) ) ;
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end

reds = reds /sum( reds ) ;

ye l l ows = ye l l ows /sum( ye l l ows ) ;

g reens = greens /sum( g reens ) ;

r edye l l ow = redye l l ow /sum(max( r edye l l ow ) ) ;

%marginal d i s t r i t b u t i o n s

figure ;

plot ( xaxis , reds , ’ c o l o r ’ , ’ red ’ )

hold on

plot ( xaxis , ye l lows , ’ c o l o r ’ , [ 1 0 .9375 0 ] )

hold on

plot ( xaxis , greens , ’ c o l o r ’ , [ 0 0 . 5 0 ] )

xlabel ( ’ S ta t i onary Proport ion ’ )

ylabel ( ’ P robab i l i t y ’ )

legend ({ ’Red ’ , ’ Yellow ’ , ’ Green ’ } , ’ Locat ion ’ , ’ North ’ )

t i t l e ( ’ Marginal D i s t r i bu t i o n s f o r Reve r s i b l e TF ’ )

hold o f f

%sur face p l o t

figure ;

surf ( xaxis , xaxis , r edye l l ow )

t i t l e ( ’ Logar ithmic Jo int D i s t r i bu t i on o f Red and Yellow Sta t e s For Reve r s i b l e TF ’ )

xlabel ( ’Red Stat i onary Proport ion ’ )

ylabel ( ’ Yellow Stat i onary Proport ion ’ )

zlabel ( ’ P robab i l i t y ’ )

hold o f f

%sca t t e r p l o t
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figure ;

s c a t t e r ( p l o t s ( 1 , : ) , p l o t s ( 2 , : ) , 1 )

t i t l e ( ’ Jo int D i s t r i bu t i on o f Red and Yellow Sta t e s For Reve r s i b l e TF ’ )

xlabel ( ’Red Stat i onary Proport ion ’ )

ylabel ( ’ Yellow Stat i onary Proport ion ’ )

hold o f f

end

Samples unrestricted transition functions

File: unres.m

function percentage=unres (MAXIT, nbins )

MAXIT=10000;

bank=zeros (3 ,MAXIT) ;

for t=1:MAXIT

r = rand ( 3 , 2 ) ;

x11 = r ( 1 , 1 ) ;

x12 = (1− x11 )∗ r ( 1 , 2 ) ;

x13 = (1−x11−x12 ) ;

x21 = r ( 2 , 1 ) ;

x22 = (1− x21 )∗ r ( 2 , 2 ) ;

x23 = (1−x21−x22 ) ;

x31 = r ( 3 , 1 ) ;

x32 = (1− x31 )∗ r ( 3 , 2 ) ;

x33 = (1−x31−x32 ) ;

r1 = [ x11 x12 x13 ] ;

r2 = [ x21 x22 x23 ] ;
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r3= [ x31 x32 x33 ] ;

r1=r1 (randperm( numel ( r1 ) ) ) ;

r2=r2 (randperm( numel ( r2 ) ) ) ;

r3=r3 (randperm( numel ( r3 ) ) ) ;

p = transpose ( [ r1 ; r2 ; r3 ] ) ;

[V,D]=eig (p ) ;

d=diag (D) ;

[ ˜ , idx ]=max(d ) ;

s d i s t 1=real (V( : , idx ) ) ;

s d i s t 1=sd i s t 1 /sum( s d i s t 1 ) ;

bank ( : , t )= sd i s t 1 ;

end

counter = 0 ;

for i = 1 : length ( bank ( 1 , : ) )

i f bank (1 , i )>0.10

counter = counter + 1 ;

end

end

percentage = counter / length ( bank ( 1 , : ) ) ;

%separa t e s the t o t a l s t a t i ona ry d i s t r i b u t i o n s in to red , green , and ye l l ow

xax i s = 1/ nbins ∗ ( 1 : nbins ) ;

datared = histogram (bank ( 1 , : ) , nbins ) ;

r eds = datared . Values ;

dataye l low = histogram (bank ( 2 , : ) , nbins ) ;
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ye l l ows = dataye l low . Values ;

datagreen = histogram (bank ( 3 , : ) , nbins ) ;

g reens = datagreen . Values ;

r edye l l ow = h i s t 3 ( bank ( 1 : 2 , : ) ’ , [ nbins nbins ] ) ;

r eds = reds /sum( reds ) ;

ye l l ows = ye l l ows /sum( ye l l ows ) ;

g reens = greens /sum( g reens ) ;

r edye l l ow = redye l l ow /sum(max( r edye l l ow ) ) ;

%marginal d i s t r i t b u t i o n s

figure ;

plot ( xaxis , reds , ’ c o l o r ’ , ’ red ’ )

hold on

plot ( xaxis , ye l lows , ’ c o l o r ’ , [ 1 0 .9375 0 ] )

hold on

plot ( xaxis , greens , ’ c o l o r ’ , [ 0 0 . 5 0 ] )

xlabel ( ’ S ta t i onary Proport ion ’ )

ylabel ( ’ P robab i l i t y ’ )

legend ({ ’Red ’ , ’ Yellow ’ , ’ Green ’ } , ’ Locat ion ’ , ’ North ’ )

t i t l e ( ’ Marginal D i s t r i bu t i o n s f o r Unre s t r i c t ed TF ’ )

hold o f f

%sur face p l o t

figure ;

surf ( xaxis , xaxis , r edye l l ow )

t i t l e ( ’ Jo int D i s t r i bu t i on o f Red and Yellow Sta t e s For Unre s t r i c t ed TF ’ )

xlabel ( ’Red Stat i onary Proport ion ’ )
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ylabel ( ’ Yellow Stat i onary Proport ion ’ )

zlabel ( ’ P robab i l i t y ’ )

hold o f f

end

Analyzes the marginal pdf of the reversible stationary distri-
butions near zero

File: cumulative.m

function [ x , y]= cumulat ive ( p i r )

dd=histogram ( pir , 2 0 0 ) ;

x=dd . BinEdges (1:200)+dd . BinWidth /2 ;

y=dd . Values ;

m=find (x>10ˆ(−5) & x<10ˆ(−2));

A=log ( x (m) ) ;

S=log ( y (m) ) ;

%[ a , s ]= ed f ( p i r ) ;

%A=log (a ) ;

%S=log ( s ) ;

%m=f ind (A>−6);

axis ([−10 0 −60 ,0 ] ) ;

plot (A, S ) ;

% p l o t ( x , y ) ;

end
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