Quasistationary Distributions: Existence, Uniqueness and Characterization

1/22

Iddo Ben-Ari (University of Connecticut), joint with Ningwei Jiang

University of Colorado, Colorado Springs, 2023-03-16

Outline

- 1. [Motivating Example](#page-2-0)
- 2. [QSDs: Definitions and First Results](#page-4-0)
- 3. [QSD regimes](#page-21-0)
	- **[Regeneration Regime](#page-22-0)**
	- \blacktriangleright [The Martin Boundary Regime](#page-25-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Motivating Example: Birth & Death Chain

Consider the discrete-time Birth & Death chain $(X_t : t \in \mathbb{Z}_+)$ on the states \mathbb{Z}_+ with $q \in (\frac{1}{2}, 1).$

- \triangleright A unique stationary distribution π , a distribution invariant under the dynamics of the chain. Moreover,
- For any initial distribution μ ,

$$
(*)\ P_\mu(X_t\in \cdot\)\underset{t\to\infty}{\to} \pi,\ \pi\sim \text{Geom}(1-\frac{1-q}{q})-1.
$$

KORKARYKERKER POLO

Figure: Birth & Death

3/22

Motivating Example: Birth & Death Chain

Consider the discrete-time Birth & Death chain $(X_t : t \in \mathbb{Z}_+)$ on the states \mathbb{Z}_+ with $q \in (\frac{1}{2}, 1).$

- A unique stationary distribution π , a distribution invariant under the dynamics of the chain. Moreover,
- \blacktriangleright For any initial distribution μ ,

$$
(*)\ P_\mu(X_t\in \cdot\)\underset{t\to\infty}{\to} \pi,\ \pi\sim \text{Geom}(1-\frac{1-q}{q})-1.
$$

Now absorb ("kill") the process at 0, setting $p(0, 0) = 1$.

- \blacktriangleright (*) still holds, but with a trivial stationary distribution $\pi = \delta_0$.
- ▶ How would the process behave, conditioned on not being absorbed? Equivalently, is there an conditional version of $(*)$,

$$
P_{\mu}(X_t \in \cdot \mid \mathbf{X} \text{ has not hit 0 by time } t) \underset{t \to \infty}{\to} ?
$$

- \triangleright Quasistationary distributions (QSDs) are probability distributions appearing as such limits.
- \triangleright "What would a biological system that has survived for a long time would look like?"

KORKARYKERKER POLO

Figure: Birth & Death killed at 0

3/22

Definitions

Assumption 1

Let $\mathsf{X} = (X_t : t \in \mathbb{Z}_+)$ be MC on state space $\{0\} \cup S$ where $S = \{1, \ldots, N\}$ or $S = \mathbb{N}$, with transition function p satisfying

- 1. The state 0 is a unique absorbing state: $p(0,0) = 1$.
- 2. The restriction of p to nonabsorbing states $(= S)$ is irreducible.

Let

$$
\zeta = \inf\{t \in \mathbb{N} : X_t = 0\},\
$$

the absorption time.

- 3. $P_x(\zeta < \infty) = 1$ for some (equivalently all) $x \in S$.
- 4. $E_x[\beta^{\zeta}] < \infty$ for some (equivalently all) $x \in S$ and $\beta > 1$.

Definition 1 (QSD)

A probability measure ν on S is a Quasistationary Distribution if

$$
P_{\nu}(X_t \in \cdot \mid \zeta > t) = \nu(\cdot)
$$

KORKARYKERKER POLO

for all $t \in \mathbb{Z}_+$.

First Observations

Proposition 1

 \blacktriangleright (Necessary condition) If ν is a QSD, then under P_{ν} , ζ has a geometric distribution with parameter $1 - \lambda \in (0,1)$:

$$
P_{\nu}(\zeta > t) = \lambda^{t}, \ t \in \mathbb{Z}_{+}.
$$
 (1)

 \blacktriangleright λ is called the survival probability for ν .

Eigenvector) A probability measure ν on S is a QSD with survival probability λ if and only if

$$
\nu p = \lambda \nu. \tag{2}
$$

KORK EXTERNE PROVIDE

Equivalently, ν satisfies the non-linear eigenvalue equation:

$$
\nu p = ((\nu p)1)\nu.
$$

Proposition 2 (Quasi-limiting \Rightarrow QSD)

If ν is a probability measure on S satisfying

$$
\lim_{t\to\infty} P_{\mu}(X_t \in \cdot \mid \zeta > t) = \nu \text{ for some } \mu,
$$

then ν is a QSD.

5/22

Example: RW on an Interval

Example 1 (RW on an Interval)

Let $N > 2$ be an integer, and consider the following transition function:

Figure: RW absorbed outside an interval

Solving [\(2\)](#page-5-0) yields a unique QSD ν_N , with a survival probability λ_N :

$$
\begin{cases}\n\nu_N(x) = C_N \sin(\frac{x}{N}\pi) & (C_N = \tan\frac{\pi}{2N}); \\
\lambda_N(\rho) = \frac{\rho}{2} \cos\frac{\pi}{N} + (1 - 2\rho)\n\end{cases} \tag{3}
$$

KORKARYKERKER POLO

Example 2 (Voter on a Cycle)

For $N > 2$, consider the N-cycle \mathbb{Z}_N . Assign each vertex an opinion "yes" or "no". At each unit of time, uniformly sample a vertex and a random neighbor (CW or CCW), and assign the neighbor's opinion to the chosen vertex.

- Absorbing states are consensus states: all "yes" and all "no".
- \triangleright Consensus is eventually reached.

6/22

Example: Voter on the Cycle

Evolution

1. Some non-consensus initial opinion assignment.

Figure: Initial opinion assignment

Kロトメ部トメミトメミト ミニのQC

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".

Figure: Interfaces

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:

Figure: Interfaces

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:

^I Vertex & Neighbor in same cluster [⇒] no movement of interface.

Figure: None of interface move

KORKARYKERKER OQO

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
	- \triangleright Vertex & Neighbor in same cluster \Rightarrow no movement of interface.
	- ▶ Vertex & Neighbor on two sides of an interface \Rightarrow an interface moves in one direction, with equal probability to each direction.

Figure: Interface moves

KORK EXTERNE PROVIDE

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
	- \triangleright Vertex & Neighbor in same cluster \Rightarrow no movement of interface.
	- ▶ Vertex & Neighbor on two sides of an interface \Rightarrow an interface moves in one direction, with equal probability to each direction.

Figure: Interface moves, completed

KORK EXTERNE PROVIDE

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
	- \triangleright Vertex & Neighbor in same cluster \Rightarrow no movement of interface.
	- \triangleright Vertex & Neighbor on two sides of an interface \Rightarrow an interface moves in one direction, with equal probability to each direction.
	- \blacktriangleright If interfaces meet, they are both eliminated.

Figure: Interfaces meet and eliminated

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
	- \triangleright Vertex & Neighbor in same cluster \Rightarrow no movement of interface.
	- \triangleright Vertex & Neighbor on two sides of an interface \Rightarrow an interface moves in one direction, with equal probability to each direction.
	- \blacktriangleright If interfaces meet, they are both eliminated.

Figure: Interfaces cancel each other, completed

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
	- \triangleright Vertex & Neighbor in same cluster \Rightarrow no movement of interface.
	- ^I Vertex & Neighbor on two sides of an interface [⇒] an interface moves in one direction, with equal probability to each direction.
	- \blacktriangleright If interfaces meet, they are both eliminated.
- 4. Eventually, the system has two interfaces \Rightarrow Looking for a QSD supported on states with two clusters.

Figure: Down to two interfaces

KORK EXTERNE PROVIDE

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
	- ^I Vertex & Neighbor in same cluster [⇒] no movement of interface.
	- ^I Vertex & Neighbor on two sides of an interface [⇒] an interface moves in one direction, with equal probability to each direction.
	- \blacktriangleright If interfaces meet, they are both eliminated.
- 4. Eventually, the system has two interfaces \Rightarrow Looking for a QSD supported on states with two clusters.

Figure: Down to two interfaces, completed

KORK EXTERNE PROVIDE

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
	- ^I Vertex & Neighbor in same cluster [⇒] no movement of interface.
	- ^I Vertex & Neighbor on two sides of an interface [⇒] an interface moves in one direction, with equal probability to each direction.
	- \blacktriangleright If interfaces meet, they are both eliminated.
- 4. Eventually, the system has two interfaces \Rightarrow Looking for a QSD supported on states with two clusters.

Figure: Down to two interfaces, completed

5. Per Step [3,](#page-7-0) the size of the remaining "yes" cluster performs a symmetric RW from Example [1,](#page-6-0) with $\rho = \frac{1}{N}$.

KORKARYKERKER OQO

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
	- ^I Vertex & Neighbor in same cluster [⇒] no movement of interface.
	- ^I Vertex & Neighbor on two sides of an interface [⇒] an interface moves in one direction, with equal probability to each direction.
	- \blacktriangleright If interfaces meet, they are both eliminated.
- 4. Eventually, the system has two interfaces \Rightarrow Looking for a QSD supported on states with two clusters.

Figure: Down to two interfaces, completed

- 5. Per Step [3,](#page-7-0) the size of the remaining "yes" cluster performs a symmetric RW from Example [1,](#page-6-0) with $\rho = \frac{1}{N}$.
- 6. Comeback: QSD problem has been reduced to that [of t](#page-17-0)[he](#page-19-0) [R](#page-6-1)[W](#page-7-1)[fr](#page-19-0)[om](#page-0-0) [Ex](#page-32-0)[am](#page-0-0)[ple](#page-32-0) [1.](#page-6-0)
 $\Box \rightarrow \Box \rightarrow \Box \rightarrow \Box \rightarrow \Box \rightarrow \Box \rightarrow \Box$

Example: Voter on a Cycle, Summary

Recall that for the RW on an Interval from Example [1](#page-6-0) we had, [\(3\)](#page-6-2):

$$
\begin{cases}\n\nu_N(x) = \tan(\frac{\pi}{2N})\sin(\frac{x}{N}\pi) \\
\lambda_N(\rho) = \frac{\rho}{2}\cos\frac{\pi}{N} + (1-2\rho).\n\end{cases}
$$

Proposition 3

The unique QSD for the Voter Model on \mathbb{Z}_N is a rotationally invariant distribution on configurations with exactly one cluster of each opinion, satisfying the following properties:

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

- The size of each cluster is distributed according to ν_N .
- The survival probability is $\lambda_N(\frac{1}{N})$.

Minimal Survival Probability

Necessary Condition: Geometric Tails

In light of Proposition [1](#page-5-1) and the irreducibility, if ν is a QSD with survival probability λ ,

 $E_x[\beta^{\zeta}] < \infty$, $x \in S$, $1 < \beta < \lambda^{-1}$.

This explains Assumption [1](#page-4-1) part 4, leading to

Definition 2 (Minimal Survival Probability)

 \blacktriangleright Define

$$
\lambda_0 = \inf \{ \lambda < 1 : E_x[\lambda^{-\zeta}] < \infty \text{ for some } x \in S \}. \tag{4}
$$

KORKARYKERKER OQO

That is λ_0 is the geometric tail of ζ under P_x for some (any) $x \in S$.

A QSD with survival probability λ_0 is called a minimal QSD.

Corollary 4

- 1. $0 < \lambda_0 < 1$.
- 2. For a QSD, the survival probability λ satisfies $\lambda_0 \leq \lambda < 1$.
- \triangleright Why "minimal" QSD? For a QSD with survival probability λ ,

$$
E_\nu[\zeta] = \frac{1}{1-\lambda} \geq \frac{1}{1-\lambda_0},
$$

QSD Regimes

Regimes Identified

Study of QSDs for a given survival probability λ is according to the following:

KORKARYKERKER OQO

General features

- \blacktriangleright Regeneration
	- \blacktriangleright Reminiscent to positive recurrent MCs.
	- In this regime, if a QSD exists, it is unique.
- \blacktriangleright Martin Boundary
	- **IN Reminiscent to Poisson Boundary for transient Markov chains.**
	- Applicable to λ_0 in some cases.
	- \blacktriangleright Easy to construct examples where uniqueness does not hold.

Regeneration Regime

Definition 3 (Hitting times) For $x \in S$ let

$$
\tau_x=\inf\{t\geq \mathbb{N}: X_t=x\}.
$$

Theorem 5 (Regeneration)

Suppose $E_x[\lambda_0^{-\zeta}] = \infty$. Then p possesses a QSD with survival probability λ_0 if and only if

$$
E_x[\lambda_0^{-\zeta}, \zeta < \tau_x] < \infty \text{ for some } x \in S.
$$
 (5)

In this case the QSD with survival probability λ_0 is unique, given by

$$
\nu(x) = \frac{\lambda_0^{-1} - 1}{E_x[\lambda_0^{-\zeta}, \zeta < \tau_x]}
$$
\n
$$
\tag{6}
$$

KORKARYKERKER OQO

Proposition 6 (Perron-Frobenius)

If S is finite, there exists a unique QSD. The QSD has survival probability λ_0 and is given by (6) .

Martin Boundary

Preface

- \triangleright Recall that this regime corresponds to existence and characterization of QSDs for survival probabilities λ satisfying $E_x[\lambda^{-\zeta}]<\infty.$
- As finite S was settled in Proposition [6:](#page-22-2) In what follows, we assume $S = \mathbb{N}$.
- \triangleright Two main and newly obtained results, Theorem [7](#page-23-0) and Theorem [10.](#page-28-0) The latter provides complete description of QSDs.

Theorem 7 (Asymptotics of GFs)

Suppose $\alpha>1$ satisfy $\mathsf{E}_{\mathsf{x}}[\alpha^{\zeta}]<\infty.$ Then

- 1. If $\lim_{x\to\infty} E_x[\beta^{\zeta}] = \infty$ for some $\beta < \alpha$, then there exists a QSD corresponding to the survival probability α^{-1} .
- 2. If lim $\sup_{x\to\infty}E_x[\alpha^\zeta]<\infty$, then there does not exist a QSD corresponding to the survival probability α^{-1} .

Corollary 8 (Continuum of QSDs)

If $\lim_{x\to\infty} E_x[\beta^{\zeta}] = \infty$ for some $\beta < \frac{1}{\lambda_0}$, then for every $\lambda \in [\lambda_0, \beta^{-1})$ there exists a QSD corresponding to the survival probability λ .

Corollary [8:](#page-23-1) Two examples

Example 3 (Birth & Death)

Consider any Birth & Death process on {0} ∪ N satisfying the conditions of Assumption [1.](#page-4-1)

Fi Trivially, under P_x , $\zeta \geq x$. Therefore the condition in Corollary [8](#page-23-1) holds for all $\beta\in(1,\lambda_0^{-1}).$

► Corollary [8](#page-23-1) existence of a QSD for each survival probability in $[\lambda_0, 1)$

Example 4 (Subcritical Branching)

Consider a branching process with nondegenrate offspring distribution X, satisfying $E[X] < 1$. Then

 \blacktriangleright A calculation with the generating function gives:

$$
\lambda_0 = E[X],
$$

\n
$$
\lim_{x \to \infty} E_x[\beta^{\zeta}] = \infty \text{ for all } \beta \in (1, \lambda_0^{-1}).
$$

KORKARYKERKER OQO

i. Corollary [8](#page-23-1) existence of a QSD for each survival probability in $[E[X], 1)$. \triangleright There exists a unique minimal QSD, obtained through Theorem [5.](#page-22-3)

Martin Boundary

Overview

- ▶ Classically, Martin Boundary theory provides a compactification of the state space of a transient Markov Chain through a set of positive harmonic functions. These functions describe the tail of the chain: under the new topology the chain converges almost surely, with the limit viewed as where the process "exits" the state space.
- \triangleright We borrow the ideas and obtain a similar compatification of the state space. In our work, the time arrow is reversed: we describe the behavior of the process according to how it is "coming from infinity".
- \triangleright The result is a representation of all QSDs as a convex combination of the QSDs obtained as limits of Green's functions.

Preliminaries

- Fix $\alpha > 1$ satisfying $E_x[\alpha^{\zeta}] < \infty$.
- \blacktriangleright Define

$$
K^{\alpha}(x,y) = \underbrace{\frac{\alpha-1}{\mathcal{E}_x[\alpha^{\zeta}-1]}}_{\text{normalizing}} E_x[\sum_{s<\zeta} \alpha^s \delta_y(X_s)],
$$

 ℓ^1 -normalized (in the second variable) Green's function for αp .

Martin Compactification: Construction

Definition 4 (Martin Compactification)

- A sequence $\mathbf{x} = (x_n : n \in \mathbb{N})$ in $\mathbb N$ satisfying $\lim_{n\to\infty} x_n = \infty$ is convergent if $\lim_{n\to\infty} K^{\alpha}(x_n, y)$ exists for all $y \in \mathbb{N}$.
- Two convergent sequences x and \bar{x} are equivalent if

$$
\lim_{n\to\infty} K^{\alpha}(x_n,y)=\lim_{n\to\infty} K^{\alpha}(\bar{x}_n,y) \text{ for all } y\in\mathbb{N}.
$$

 \triangleright Write $[x]$ for the equivalency class of the convergent sequence x. Martin Boundary: Let

$$
K^{\alpha}([\mathbf{x}], \cdot) = \lim_{n \to \infty} K^{\alpha}(x_n, \cdot) \qquad \leftarrow boundary points
$$

\n
$$
\partial^{\alpha} M = \{ [\mathbf{x}] : K^{\alpha}([\mathbf{x}], \cdot) \} \qquad \leftarrow \text{ Martin Boundary}
$$

\n
$$
M^{\alpha} = \mathbb{N} \cup \partial^{\alpha} M \qquad \leftarrow \text{Martin Space}
$$

 \blacktriangleright Metric: For a, $b \in M^{\alpha}$, let

$$
\rho^{\alpha}(a,b)=\sum_{n=1}^{\infty}\frac{1}{2^n}\left(|\delta_{a,n}-\delta_{b,n}|+d(K^{\alpha}(a,n),K^{\alpha}(b,n))\right),
$$

where $d(i, j) = \frac{|i - j|}{1 + |i - j|}$.

Martin Compactification: Properties

Proposition 9 (Properties of the metric space)

- ► $(M^{\alpha}, \rho^{\alpha})$ is a compact metric space and $\partial^{\alpha} M$ is closed.
- A sequence $\mathbf{a} = (a_n : n \in \mathbb{N})$ of elements of M^{α} is ρ^{α} convergent if and only if either
	- 1. There exists $a \in \mathbb{N}$ and $n_0 \in \mathbb{N}$ such that $a_n = a$ for all $n \geq n_0$:

$$
\sum_{n \to \infty} \lim_{n \to \infty} a_n = a; \text{ or}
$$

2. Condition [1](#page-27-0) does not hold and there exists $[a] \in \partial^{\alpha}M$ such that $\lim_{n\to\infty} K^{\alpha}(a_n, \cdot) = K([a], \cdot)$ \blacktriangleright $\lim_{n \to \infty} a_n = [a].$

Explanation

Roughly speaking (avoiding technical caveats):

- ► Each element of $x \in \mathbb{N}$ is identfied with the probability measure $K^{\alpha}(x, \cdot)$.
- $\blacktriangleright M^\alpha$ is obtained by closing this set with respect to pointwise limits, with set of "new" elements being $\partial^{\alpha}M$ (these limits may be sub-probability measures).
- The metric ρ^{α} corresponds to pointwise convergence.

Martin Boundary: Result

Let

$$
\mathcal{K}^{\alpha} = \{[\mathbf{x}] \in \partial^{\alpha} M : \mathcal{K}^{\alpha}([\mathbf{x}], \cdot) \text{ is a QSD}\}.
$$

Theorem 10 (Martin/Choquet Representation)

Let $\alpha>1$ satisfy $\mathsf{E}_{\mathsf{x}}[\alpha^{\zeta}]<\infty$. If ν is a QSD w/survival probability α^{-1} then there exists a Borel probability measure $\bar F_\nu$ on $\partial^\alpha M$ satisfying $\bar F_\nu(\mathcal K^\alpha)=1$ and

$$
\nu(y) = \int_{\partial \alpha_M} K^{\alpha}([\mathbf{x}], y) d \overline{F}_{\nu}([\mathbf{x}]).
$$

KORK ERKER ADAM ADA

Bottom line

Every QSD is a convex combination of elements of K^{α} .

Theorem [10:](#page-28-0) Immediate Application

We revisit a previously introduced example:

Example [3:](#page-24-0) Birth & Death

- ► Corollary [8](#page-23-1) \Rightarrow a QSD for every survival probability in $[\lambda_0, 1)$.
- **►** Theorem $10 \Rightarrow$ $10 \Rightarrow$ a unique QSD for every survival probability in $[\lambda_0, 1)$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Example: QSDs on a Tree

Example 5 (Example: QSDs on a Tree)

Consider the

d-regular tree with root ρ . Evolution:

- From each state other than ρ move towards ρ with probability $q > \frac{1}{2}$.
- \blacktriangleright From each state move to a one of the neighbors away from the root with probability $1 - q$, uniformly over the neighbors.
- \blacktriangleright From the root: move to the absorbing state ∆ with probability $\delta \in (0, q)$, and stay put with probability $1 - (1 - q) - \delta = q - \delta$.

Example: QSDs on a Tree, completed

Proposition 11 (Minimal Survival Probability)

Consider the Tree from Example [5.](#page-30-1) Let

$$
\Rightarrow \lambda_{\rho} = 2\sqrt{q(1-q)}
$$

$$
\Rightarrow \text{Let } \delta_{cr} = \sqrt{q}(\sqrt{q} - \sqrt{1-q}).
$$

Then

Proposition 12 (QSDs from K^{α})

1. For $\lambda\le\lambda_0$ satisfying $E_\rho[\lambda^{-\zeta}]<\infty$ and every branch, $\lim_{n\to\infty}K^{\lambda^{-1}}(x_n,\cdot)$ exists along any sequence tending to infinity along the branch and is a QSD.

 $\vert \vert$ = ∞ $\vert < \infty$

- 2. The QSDs obtained along each of the branches are distinct.
- 3. If $E_\rho[\lambda_0^{-\zeta}]=\infty$, there exists a unique QSD with survival probability λ_0 , obtained through Theorem [5.](#page-22-3)

KOD KOD KED KED E VOOR

Theorem $10 +$ $10 +$ Proposition $12 \Rightarrow$ $12 \Rightarrow$ All QSDs for the mode[l.](#page-30-0)

 $E_{\rho}[\lambda]$ −ζ $\overline{0}$

Thank you!

٠

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @