Quasistationary Distributions: Existence, Uniqueness and Characterization

Iddo Ben-Ari (University of Connecticut), joint with Ningwei Jiang

University of Colorado, Colorado Springs, 2023-03-16

(ロ)、(型)、(E)、(E)、 E) の(()

- 1. Motivating Example
- 2. QSDs: Definitions and First Results
- 3. QSD regimes
 - Regeneration Regime
 - The Martin Boundary Regime

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Motivating Example: Birth & Death Chain

Consider the discrete-time Birth & Death chain $(X_t : t \in \mathbb{Z}_+)$ on the states \mathbb{Z}_+ with $q \in (\frac{1}{2}, 1)$.

- A unique stationary distribution π , a distribution invariant under the dynamics of the chain. Moreover,
- For any initial distribution μ,

$$(*) \ P_{\mu}(X_t \in \cdot \) \stackrel{
ightarrow}{
ightarrow} \pi, \ \pi \sim {\sf Geom}(1-rac{1-q}{q})-1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Figure: Birth & Death

Motivating Example: Birth & Death Chain

Consider the discrete-time Birth & Death chain $(X_t : t \in \mathbb{Z}_+)$ on the states \mathbb{Z}_+ with $q \in (\frac{1}{2}, 1)$.

- A unique stationary distribution π , a distribution invariant under the dynamics of the chain. Moreover,
- For any initial distribution μ,

$$(*) \ P_{\mu}(X_t \in \cdot \) \xrightarrow[t \to \infty]{} \pi, \ \pi \sim \operatorname{Geom}(1 - \frac{1 - q}{q}) - 1.$$

Now absorb ("kill") the process at 0, setting p(0,0) = 1.

- (*) still holds, but with a trivial stationary distribution $\pi = \delta_0$.
- How would the process behave, conditioned on not being absorbed? Equivalently, is there an conditional version of (*),

$$P_{\mu}(X_t \in \cdot \mid \mathbf{X} \text{ has not hit 0 by time } t) \xrightarrow[t \to \infty]{} ?$$

- Quasistationary distributions (QSDs) are probability distributions appearing as such limits.
- "What would a biological system that has survived for a long time would look like?"

Figure: Birth & Death killed at 0

Definitions

Assumption 1

Let $X = (X_t : t \in \mathbb{Z}_+)$ be MC on state space $\{0\} \cup S$ where $S = \{1, ..., N\}$ or $S = \mathbb{N}$, with transition function p satisfying

- 1. The state **0** is a unique absorbing state: p(0,0) = 1.
- 2. The restriction of p to nonabsorbing states (= S) is irreducible.

Let

$$\zeta = \inf\{t \in \mathbb{N} : X_t = 0\},\$$

the absorption time.

- 3. $P_x(\zeta < \infty) = 1$ for some (equivalently all) $x \in S$.
- 4. $E_x[\beta^{\zeta}] < \infty$ for some (equivalently all) $x \in S$ and $\beta > 1$.

Definition 1 (QSD)

A probability measure ν on S is a Quasistationary Distribution if

$$P_{
u}(X_t \in \cdot \mid \zeta > t) =
u(\cdot)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for all $t \in \mathbb{Z}_+$.

First Observations

Proposition 1

• (Necessary condition) If ν is a QSD, then under P_{ν} , ζ has a geometric distribution with parameter $1 - \lambda \in (0, 1)$:

$$P_{\nu}(\zeta > t) = \lambda^{t}, \ t \in \mathbb{Z}_{+}.$$
(1)

 \triangleright λ is called the survival probability for ν .

 (Eigenvector) A probability measure ν on S is a QSD with survival probability λ if and only if

$$\nu p = \lambda \nu.$$
 (2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Equivalently, ν satisfies the non-linear eigenvalue equation:

$$\nu p = ((\nu p)\mathbf{1})\nu.$$

Proposition 2 (Quasi-limiting \Rightarrow QSD)

If ν is a probability measure on S satisfying

$$\lim_{t\to\infty} P_{\mu}(X_t \in \cdot \mid \zeta > t) = \nu \text{ for some } \mu,$$

then ν is a QSD .

Example: RW on an Interval

Example 1 (RW on an Interval)

Let $N \ge 2$ be an integer, and consider the following transition function:

Figure: RW absorbed outside an interval

Solving (2) yields a unique QSD ν_N , with a survival probability λ_N :

$$\begin{cases} \nu_N(x) = C_N \sin(\frac{x}{N}\pi) & (C_N = \tan\frac{\pi}{2N}); \\ \lambda_N(\rho) = \frac{\rho}{2}\cos\frac{\pi}{N} + (1 - 2\rho) \end{cases}$$
(3)

Example 2 (Voter on a Cycle)

For $N \ge 2$, consider the N-cycle \mathbb{Z}_N . Assign each vertex an opinion "yes" or "no". At each unit of time, uniformly sample a vertex and a random neighbor (CW or CCW), and assign the neighbor's opinion to the chosen vertex.

- Absorbing states are consensus states: all "yes" and all "no".
- Consensus is eventually reached.

Evolution

1. Some non-consensus initial opinion assignment.

Figure: Initial opinion assignment

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".

Figure: Interfaces

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:

Figure: Interfaces

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
 - Vertex & Neighbor in same cluster ⇒ no movement of interface.

Figure: None of interface move

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
 - Vertex & Neighbor in same cluster ⇒ no movement of interface.
 - Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction, with equal probability to each direction.

Figure: Interface moves

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
 - Vertex & Neighbor in same cluster ⇒ no movement of interface.
 - Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction, with equal probability to each direction.

Figure: Interface moves, completed

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
 - Vertex & Neighbor in same cluster ⇒ no movement of interface.
 - Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction, with equal probability to each direction.
 - If interfaces meet, they are both eliminated.

Figure: Interfaces meet and eliminated

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
 - Vertex & Neighbor in same cluster ⇒ no movement of interface.
 - Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction, with equal probability to each direction.
 - If interfaces meet, they are both eliminated.

Figure: Interfaces cancel each other, completed

Example: Voter on the Cycle

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
 - Vertex & Neighbor in same cluster \Rightarrow no movement of interface.
 - Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction, with equal probability to each direction.
 - If interfaces meet, they are both eliminated.
- 4. Eventually, the system has two interfaces \Rightarrow Looking for a QSD supported on states with two clusters.

Figure: Down to two interfaces

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
 - Vertex & Neighbor in same cluster ⇒ no movement of interface.
 - Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction, with equal probability to each direction.
 - If interfaces meet, they are both eliminated.
- 4. Eventually, the system has two interfaces \Rightarrow Looking for a QSD supported on states with two clusters.

Figure: Down to two interfaces, completed

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
 - Vertex & Neighbor in same cluster ⇒ no movement of interface.
 - Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction, with equal probability to each direction.
 - If interfaces meet, they are both eliminated.
- 4. Eventually, the system has two interfaces \Rightarrow Looking for a QSD supported on states with two clusters.

Figure: Down to two interfaces, completed

5. Per Step 3, the size of the remaining "yes" cluster performs a symmetric RW from Example 1, with $\rho = \frac{1}{N}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Evolution

- 1. Some non-consensus initial opinion assignment.
- 2. Each non-absorbing state has an even number of interfaces between clusters of "yes" and "no".
- 3. In terms of interfaces, each step either:
 - Vertex & Neighbor in same cluster ⇒ no movement of interface.
 - Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction, with equal probability to each direction.
 - If interfaces meet, they are both eliminated.
- 4. Eventually, the system has two interfaces \Rightarrow Looking for a QSD supported on states with two clusters.

Figure: Down to two interfaces, completed

- 5. Per Step 3, the size of the remaining "yes" cluster performs a symmetric RW from Example 1, with $\rho = \frac{1}{M}$.
- 6. Comeback: QSD problem has been reduced to that of the RW from Example 1.

Example: Voter on a Cycle, Summary

Recall that for the RW on an Interval from Example 1 we had, (3):

$$\begin{cases} \nu_N(x) = \tan(\frac{\pi}{2N})\sin(\frac{x}{N}\pi)\\ \lambda_N(\rho) = \frac{\rho}{2}\cos\frac{\pi}{N} + (1-2\rho). \end{cases}$$

Proposition 3

The unique QSD for the Voter Model on \mathbb{Z}_N is a rotationally invariant distribution on configurations with exactly one cluster of each opinion, satisfying the following properties:

- The size of each cluster is distributed according to ν_N.
- The survival probability is $\lambda_N(\frac{1}{N})$.

Minimal Survival Probability

Necessary Condition: Geometric Tails

In light of Proposition 1 and the irreducibility, if ν is a QSD with survival probability λ ,

 $E_x[\beta^{\zeta}] < \infty, \ x \in S, \ 1 < \beta < \lambda^{-1}.$

This explains Assumption 1 part 4, leading to

Definition 2 (Minimal Survival Probability)

Define

$$\lambda_0 = \inf\{\lambda < 1 : E_x[\lambda^{-\zeta}] < \infty \text{ for some } x \in S\}.$$
(4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

That is λ_0 is the geometric tail of ζ under P_x for some (any) $x \in S$.

A QSD with survival probability λ_0 is called a minimal QSD.

Corollary 4

- 1. $0 < \lambda_0 < 1$.
- 2. For a QSD, the survival probability λ satisfies $\lambda_0 \leq \lambda < 1$.
- ▶ Why "minimal" QSD? For a QSD with survival probability λ ,

$${\sf E}_
u[\zeta] = rac{1}{1-\lambda} \geq rac{1}{1-\lambda_0},$$

QSD Regimes

Regimes Identified

Study of QSDs for a given survival probability λ is according to the following:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

General features

- Regeneration
 - Reminiscent to positive recurrent MCs.
 - In this regime, if a QSD exists, it is unique.
- Martin Boundary
 - Reminiscent to Poisson Boundary for transient Markov chains.
 - Applicable to λ₀ in some cases.
 - Easy to construct examples where uniqueness does not hold.

Regeneration Regime

Definition 3 (Hitting times) For $x \in S$ let

$$\tau_x = \inf\{t \ge \mathbb{N} : X_t = x\}.$$

Theorem 5 (Regeneration)

Suppose $E_x[\lambda_0^{-\zeta}]=\infty.$ Then p possesses a QSD with survival probability λ_0 if and only if

$$E_{x}[\lambda_{0}^{-\zeta}, \zeta < \tau_{x}] < \infty \text{ for some } x \in S.$$
(5)

In this case the QSD with survival probability λ_0 is unique, given by

$$\nu(x) = \frac{\lambda_0^{-1} - 1}{E_x[\lambda_0^{-\zeta}, \zeta < \tau_x]}$$
(6)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition 6 (Perron-Frobenius)

If S is finite, there exists a unique QSD. The QSD has survival probability λ_0 and is given by (6).

Martin Boundary

Preface

- Recall that this regime corresponds to existence and characterization of QSDs for survival probabilities λ satisfying E_x[λ^{-ζ}] < ∞.</p>
- As finite S was settled in Proposition 6: In what follows, we assume $S = \mathbb{N}$.
- Two main and newly obtained results, Theorem 7 and Theorem 10. The latter provides complete description of QSDs.

Theorem 7 (Asymptotics of GFs)

Suppose $\alpha > 1$ satisfy $E_x[\alpha^{\zeta}] < \infty$. Then

- 1. If $\lim_{x\to\infty} E_x[\beta^{\zeta}] = \infty$ for some $\beta < \alpha$, then there exists a QSD corresponding to the survival probability α^{-1} .
- 2. If $\limsup_{x\to\infty} E_x[\alpha^{\zeta}] < \infty$, then there does not exist a QSD corresponding to the survival probability α^{-1} .

Corollary 8 (Continuum of QSDs)

If $\lim_{x\to\infty} E_x[\beta^{\zeta}] = \infty$ for some $\beta < \frac{1}{\lambda_0}$, then for every $\lambda \in [\lambda_0, \beta^{-1})$ there exists a QSD corresponding to the survival probability λ .

Corollary 8: Two examples

Example 3 (Birth & Death)

Consider any Birth & Death process on $\{0\}\cup\mathbb{N}$ satisfying the conditions of Assumption 1.

Trivially, under P_x , $\zeta \ge x$. Therefore the condition in Corollary 8 holds for all $\beta \in (1, \lambda_0^{-1})$.

Corollary 8 existence of a QSD for each survival probability in $[\lambda_0, 1)$

Example 4 (Subcritical Branching)

Consider a branching process with nondegenrate offspring distribution X, satisfying E[X] < 1. Then

A calculation with the generating function gives:

$$\lambda_0 = E[X],$$

 $\lim_{x \to \infty} E_x[\beta^{\zeta}] = \infty \text{ for all } \beta \in (1, \lambda_0^{-1}).$

Corollary 8 existence of a QSD for each survival probability in [E[X], 1).
 There exists a unique minimal QSD, obtained through Theorem 5.

Martin Boundary

Overview

- Classically, Martin Boundary theory provides a compactification of the state space of a transient Markov Chain through a set of positive harmonic functions. These functions describe the tail of the chain: under the new topology the chain converges almost surely, with the limit viewed as where the process "exits" the state space.
- We borrow the ideas and obtain a similar compatification of the state space. In our work, the time arrow is reversed: we describe the behavior of the process according to how it is "coming from infinity".
- The result is a representation of all QSDs as a convex combination of the QSDs obtained as limits of Green's functions.

Preliminaries

- Fix $\alpha > 1$ satisfying $E_x[\alpha^{\zeta}] < \infty$.
- Define

$$\mathcal{K}^{\alpha}(x,y) = \underbrace{\frac{\alpha - 1}{\mathcal{E}_{x}[\alpha^{\zeta} - 1]}}_{\text{normalizing}} \mathcal{E}_{x}[\sum_{s < \zeta} \alpha^{s} \delta_{y}(X_{s})],$$

 ℓ^1 -normalized (in the second variable) Green's function for αp .

Martin Compactification: Construction

Definition 4 (Martin Compactification)

- A sequence $\mathbf{x} = (x_n : n \in \mathbb{N})$ in \mathbb{N} satisfying $\lim_{n\to\infty} x_n = \infty$ is <u>convergent</u> if $\lim_{n\to\infty} K^{\alpha}(x_n, y)$ exists for all $y \in \mathbb{N}$.
- Two convergent sequences x and \bar{x} are equivalent if

$$\lim_{n\to\infty} K^{\alpha}(x_n, y) = \lim_{n\to\infty} K^{\alpha}(\bar{x}_n, y) \text{ for all } y \in \mathbb{N}.$$

Write [x] for the <u>equivalency class</u> of the convergent sequence x.
 Martin Boundary: Let

$$\begin{split} \mathcal{K}^{\alpha}([\mathbf{x}], \cdot) &= \lim_{n \to \infty} \mathcal{K}^{\alpha}(\mathbf{x}_n, \cdot) & \leftarrow \text{ boundary points} \\ \partial^{\alpha} \mathcal{M} &= \{[\mathbf{x}] : \mathcal{K}^{\alpha}([\mathbf{x}], \cdot)\} & \leftarrow \text{ Martin Boundary} \\ \mathcal{M}^{\alpha} &= \mathbb{N} \cup \partial^{\alpha} \mathcal{M} & \leftarrow \text{ Martin Space} \end{split}$$

• <u>Metric</u>: For $a, b \in M^{\alpha}$, let

$$\rho^{\alpha}(a,b) = \sum_{n=1}^{\infty} \frac{1}{2^n} \left(|\delta_{a,n} - \delta_{b,n}| + d(K^{\alpha}(a,n),K^{\alpha}(b,n)) \right),$$

where $d(i,j) = \frac{|i-j|}{1+|i-j|}$.

・ロト・四ト・モート ヨー うへの

Martin Compactification: Properties

Proposition 9 (Properties of the metric space)

- $(M^{\alpha}, \rho^{\alpha})$ is a compact metric space and $\partial^{\alpha}M$ is closed.
- A sequence $\mathbf{a} = (\mathbf{a}_n : n \in \mathbb{N})$ of elements of M^{α} is ρ^{α} convergent if and only if either
 - 1. There exists $a \in \mathbb{N}$ and $n_0 \in \mathbb{N}$ such that $a_n = a$ for all $n \ge n_0$:

$$\lim_{n \to \infty} a_n = a; or$$

 Condition 1 does not hold and there exists [a] ∈ ∂^αM such that lim_{n→∞} K^α(a_n, ·) = K([a], ·)
 lim_{n→∞} a_n = [a].

Explanation

Roughly speaking (avoiding technical caveats):

- ▶ Each element of $x \in \mathbb{N}$ is identified with the probability measure $K^{\alpha}(x, \cdot)$.
- M^α is obtained by closing this set with respect to pointwise limits, with set of "new" elements being ∂^αM (these limits may be sub-probability measures).
- The metric ρ^{α} corresponds to pointwise convergence.

Martin Boundary: Result

Let

$$\mathcal{K}^{\alpha} = \{ [\mathbf{x}] \in \partial^{\alpha} M : \mathcal{K}^{\alpha}([\mathbf{x}], \cdot) \text{ is a QSD} \}.$$

Theorem 10 (Martin/Choquet Representation)

Let $\alpha > 1$ satisfy $E_x[\alpha^{\zeta}] < \infty$. If ν is a QSD w/survival probability α^{-1} then there exists a Borel probability measure \bar{F}_{ν} on $\partial^{\alpha}M$ satisfying $\bar{F}_{\nu}(\mathcal{K}^{\alpha}) = 1$ and

$$\nu(\mathbf{y}) = \int_{\partial^{\alpha} M} K^{\alpha}([\mathbf{x}], \mathbf{y}) d\bar{F}_{\nu}([\mathbf{x}]).$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Bottom line

Every QSD is a convex combination of elements of K^α.

19/22 -

Theorem 10: Immediate Application

We revisit a previously introduced example:

Example 3: Birth & Death

- Corollary 8 \Rightarrow a QSD for every survival probability in [λ_0 , 1).
- Theorem 10 \Rightarrow a unique QSD for every survival probability in [λ_0 , 1).

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Example: QSDs on a Tree

Example 5 (Example: QSDs on a Tree)

Consider the

d-regular tree with root ρ . Evolution:

- From each state other than ρ move towards ρ with probability q > ¹/₂.
- From each state move to a one of the neighbors away from the root with probability 1 - q, uniformly over the neighbors.
- From the root: move to the absorbing state Δ with probability $\delta \in (0, q)$, and stay put with probability $1 (1 q) \delta = q \delta$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Example: QSDs on a Tree, completed

Proposition 11 (Minimal Survival Probability)

Consider the Tree from Example 5. Let

•
$$\lambda_{\rho} = 2\sqrt{q(1-q)}$$

• Let $\delta_{cr} = \sqrt{q}(\sqrt{q} - \sqrt{1-q}).$

Then

λ_0 =	$=\lambda_0(\delta)=1$	$\begin{cases} q - \delta + \\ \lambda_{cr} \end{cases}$	$\frac{q(1-q)}{q-\delta}$	$\delta \in (0, \delta_{\mathbf{cr}}, \delta \in [\delta_{\mathbf{cr}}, \delta_{\mathbf{cr}}]$	
	$\delta \in$	$(0, \delta_{cr})$	$\{\delta_{cr}\}$	$(\delta_{cr}, q]$	
	λ_0	$<\lambda_{ ho}$	$=\lambda_{ ho}$		
	$E_{\rho}[\lambda_0^{-\zeta}]$	$=\infty$		$<\infty$	

Proposition 12 (QSDs from K^{α})

- 1. For $\lambda \leq \lambda_0$ satisfying $E_{\rho}[\lambda^{-\zeta}] < \infty$ and every branch, $\lim_{n \to \infty} K^{\lambda^{-1}}(x_n, \cdot)$ exists along any sequence tending to infinity along the branch and is a QSD.
- 2. The QSDs obtained along each of the branches are distinct.
- 3. If $E_{\rho}[\lambda_0^{-\zeta}] = \infty$, there exists a unique QSD with survival probability λ_0 , obtained through Theorem 5.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うらぐ

Theorem $10 + Proposition 12 \Rightarrow All QSDs$ for the model.

Thank you!

-0