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1 Intro

Our starting point is a measure space (£, F, u). As usual, we will assume this
measure space is complete and to avoid trivialities, we will assume that there
exists A € F with u(A4) € (0, 00).

We proved that the sum of two measurable functions is measurable and that
a constant times a measurable function is measurable. Therefore the set £ of
real-valued measurable functions is a vector space with respect to pointwise
addition and scalar multiplication. Note that this structure has nothing to do
with the measure, just the sigma-algebra.

For f € £ and p € [1,00). Define

nmfﬂfmwmi

and

Lr={feL:|fl, < oo}.

In what follows we will always write ¢ for the conjugate exponent to p, defined
through the relation:
= + ! =1 (1)
P oq
For example if p=2, ¢=2and if p=3, ¢ = %, etc.

Note that ¢ € (1, 00|, and that ¢ = co if and only if p = 1. The fact that the
conjugate of p = 1 is ¢ = oo suggests (as will become apparent through Holder’s
inequality, Theorem 2.2) that we may want to introduce and define £>*°. We
will do that in Section 4.

The following identity is a restatement of the relation (1):

p—l:g
q

2 Two Inequalities: Holder & Minkowski

Holder’s inequality is among the most important inequalities in analysis. It is
a generalization of the Cauchy-schwarz inequality. It is derived from one of the



oldest tricks in the playbook, the Arithmetic-Geometric inequality.

Proposition 2.1 (Arithmetic-Geometric Inequality). Let a, 8 be nonnegative
and A € (0,1). Then
B < Ao+ (1 - N3

with a strict inequality if and only if o # f3.

The proof is equivalent to the strict convexity of the exponential function.
Indeed if af = 0 the inequality is trivial and otherwise the lefthand side is
eMnat(=ANInB and the strict convexity of the exponential implies this is <
e 4 (1 — e8| with equality if and only if Ina = In 3.

Theorem 2.2 (Holder’s Inequality). Let p € (1,00) and let q be its conjugate
from (1). Let f and g be measurable and nonnegative. Then

/ fodu < £ Nl

where the righthand side is defined as 0 if one of the factors is = 0. If f € LP
and g € L4, then an equality holds if and only f = 0 p-a.e., g = 0 p-a.e. or
there exists some C > 0 such that fP = Cg? p-a.e.

We note that the condition for equality can be restated as fP and g? are
linearly dependent, p-a.e.

Proof. We observe that if || f||, = 0 then f =0 p-a.e., and consequently fg =0
p-a.e., and therefore both the lefthand side and the righthand side are zero. The
same holds if ||g||, = 0.

We can therefore assume that both ||f||, and | g||, are strictly positive. If
any of these is infinite, then the inequality is trivial.

We are left with the case ||f|p,|lgllq € (0,00). We will make yet another
reduction which will save some work. Let F' = f/| f|l, and G = g/||g|lq- Then

[ todu=1s1ulsl, [ G

Therefore Holder’s inequality is equivalent to

/FGd,uS 1 (2)

We note that the definition of F' and G, ||F||, = |G|l = 1. Let’s now use the
AGM, Proposition 2.1, with A\ = % and therefore 1 — X\ = %, a = FP(w) and
B8 = GP(w), which then gives
1 1
(FG)w) < JFP(w) + 2 G(w). (3)
with a strict inequality on the set A = {w : FP(w) # G%(w)}. Now integrate both
sides of (3) to obtain (2). An equality holds if and only u(A) = 0, equivalently



A° prae. Now A = {fP = Hg”%gq}, which implies that for some C' > 0, fP =

CgY, p-a.e. Integrating the last equality gives || f||) = C||g||Z, or C = || f[|5 /9]l
that is C' is determined, and so that if for some C > 0, f? = C¢? p-a.e., then
A¢ p-a.e., and so an equality holds in Holder’s inequality. O

A very important corollary to Holder’s inequality is the following, the trian-
gle inequality for || - ||,:

Theorem 2.3 (Minkowski’s Inequality). Letp € (1,00) and let f,g € LP. Then
1f+gllp < 171+ llgllp-

Clearly if f € LP and c € R, then cf € £P. Minkowski’s inequality implies
that if f,g € LP, then f + g € LP, and so we obtain the following:

Corollary 2.4. LP is a vector space with respect to pointwise addition and
scalar multiplication.

Proof. If the lefthand side is zero there is nothing to prove. We will proceed
assuming || f + g/, > 0 (apriori it may be infinite). To get the lefthand side we
need to integrate the function |f + g|P. Use the triangle inequality to obtain

[f+ 9P =1f +gllf + 9Pt < (I f1+1gDIf +9P7" (4)
Now |f + g| < 2max(|f],]g]), and so
[f +glP~ < 2P~ Pmax(|fP g[P ).
Recalling that p — 1 = %, it follows that
(5 +gP=)7 < 2 max(|f17,]g?) < 227 + Igl?).

Since f,g € LP, |f + g|P~! € £9. Now,

17+ = (17 1= [1f + gPdu=IF + I,

that is
IS+ 9P~ g = IS+ gl (5)
Now integrate both sides of (4)

I +gl2 = / 1+ glPdu
< / I+ gPtdu + / 9lI + glPdu

< Il f + gl + llglpll £ + g1z,

where the last line was obtained from Holder’s inequality and (5). Divide by
sides by ||f + g|[&/? = || f + gll5=" to obtain the result. O



3 LP, a Complete Normed Space

3.1 Normed Spaces
Recall the following definition:

Definition 1. A semi-norm ||-|| on a vector space V' is a mapping |- || — [0, 00)
with the following properties

1. (homogeneity) ||cv|| = |c|||v||, for all c € R, and v € V.

2. (triangle inequality) ||v + u| < ||| + ||ul| for all v,u € V.
A semi-norm is a norm if in addition it satisfies

0. ||v]| = 0 if and only if v = 0.
If || - || is a norm, then we call (V.|| -||) a normed space.

Now || -], is a semi-norm on the vector space £P. In general, it is not a norm.
Consider the Lebesgue measure: ||1gl|, = ||0]|p, though these two functions are
distinct elements of £. We remedy this through a simple construction of a
quotient space.

Suppose that V' is a vector space and || - || : V' — [0,00) is a semi-norm on
V. Let Vo = {v € V : |lv| = 0}. Note that V} is automatically a subspace of V
because of the semi-norm properties.

For every v € V, let v+ Vy = {v 4+ vg : v9 € Vo}. Then for v,v’ € V either
v—1v" € Vp, in which case v+ Vy = v + Vy or v — v’ € Vj, in which case
(v+Vo)N (W' 4+ Vy) =0 (check!). Let V/V; be the set {v+Vp : v € V} (in other
words: the relation v — v’ € V; is an equivalence relation on V', and V/V} is the
set of equivalence classes). We call V/V; the quotient of V over Vj.

We can equip the quotient space V/V, with a vector space structure in the
most obvious way: the addition of (v+ Vp) + (u+ Vp) is defined as (v +v) + Vo
and the scalar multiplication c¢(v + Vp) is defined as (cv) + Vo. The zero element
in this vector space, Oy/y;, is 0 + V. Abusing notation, extend || - || to V//Vj by
letting ||v + Vo|| = ||v||. We will show that this mapping is well defined and is a
norm.

First, let’s show it is well-defined. Suppose v + Vo = v’ + Vp, then |jv|| =
v + (v =) < ||V']| + |Jlv = 2'|| = ||¢/||, due to the triangle inequality. As

~——
Vo
the inequality holds with the roles of v and v’ interchanged, it follows that
[lv'|| = ||v]| and therefore the mapping is well-defined.

It immediately follows from the definition that || - || is a semi-norm on V/Vj.
To show it is a norm, observe that ||v + Vp|| = 0 if and only if ||v|| = 0 if and
only if v € Vg if and only if v + Vg = Oyy;,. Therefore (V/Vp, || - [|) is a normed
space.

Going back to our main topic. The mapping || - ||, is a semi-norm on LP.
Indeed, from the definiton, if f € £P and ¢ € R, then |[cf]l, = |¢|||f]l,- The
triangle inequality for ||- ||, is Minkowski’s inequality, Theorem 2.3. The normed



space (LP/L5,]|-]|,) obtained through the construction above is called LP. Here
Lh=A{f € LP:|f|, =0}, namely, all functions in £? (equivalently, £), which
are 0 p-a.e. An element in L? is a set of the form {f +h: h =0, p— ae.},
namely all functions equal to f p-a.e. It would be convenient to denote this
element by [f].

We turn to a very important property of our newly minted normed space,
completeness.

Definition 2. Let (V,| - ||) be a normed space.

1. A sequence (v, :n € N) in V is convergent if there exists v € V' such that
lim;, 00 ||Un, — v]| = 0, in which case we say that the sequence has a limit
v or that the sequence converges to v, denoted by lim,,_, o, v, = v.

2. A sequence (v, : n € N) is a Cauchy sequence if for every e > 0 there
exists N = N(€) such that ||v, —vn || < € for all n,n’ > N. Equivalently,
limy, 00 SUP,en [|Untm — Un] = 0.

3. (V|| - 1) is complete if every Cauchy sequence is convergent.

Note that it is very easy to see that every convergent sequence is Cauchy.
Yet not every normed space is complete. For example, R¢ with the Euclidean

norm ||(z1,...,zq)|| = /22 + - + 2% is complete, yet Q¢ with the same norm
is clearly not complete. Note that the former is £? with p being the counting
measure on {1,...,d}.

We also note that it immediately follows from the definition that every
Cauchy sequence is bounded in the following sense. If (v, : n € N) is Cauchy,
then sup,, ||vn|| < co. Indeed, pick ny such that sup,, ||Vn,+m — Vn, } < 1. Then
for n < ny, ||vn|| < max(|lvi]l,-.., [|vn,|]) and for n > nq, ||v,|] < ||on, || + 1.

3.2 Completeness of LP

In the last section we constructed a normed vector space (L7, | -||,). We briefly
describe its structure. For every f € LP, let [f] denote all functions in LP
(or more generally £) which are equal to f p-a.e. Each of these sets is an
element in LP. Addition in L? and scalar multliplication are defined by the
rules [f + g] = [f] + [g] and ¢[f] = [c¢f]. The norm of [f] is || f||,- We prove the
following:

Theorem 3.1. (LP,|| - ||,) is a complete metric space.

Proof. We only need to prove completeness.

1. Prep. Let ([fn] : n € N) be a sequence in LP. Clearly, there exists
[f] € LP such that lim,,_,[f,] = [f] if and only if lim, o ||[fn] — [f]ll, = O.
From the definition of the norm || - ||, on LP, the latter holds if and only if
limy, o0 || fr. — fllp = 0 (of course we could take instead any f;, € [fn], [’ € [f])-



2. Candidate for f. Yes, we find a candidate for f. Take any subsequence
(ng : k € N) tending to infinity. Then

k—1
fnk:fn1+2(fnl+1_fnz)- (6)
=1

Therefore,
k—1

|fnk| < |f7l1| +Z |fnz+1 - fnz‘
=1

It follows from Minkowski’s inequality, Theorem 2.3, that

k—1

I fnillp < W s llp + D s = Frllp-

=1

That’s true for any subsequence. We now pick a subsequence so that (fy, : I € N)
converges p-a.e. Pick nqy = min{n : sup,, ||frn+m — follp < 4}, and continue
inductively, letting ;11 = min{n > n; : sup,, | futm — fall, < 4=V}, This is
possible due to the definition of a Cauchy sequence.

Let Aip1 = {|fny — frno| > 270FD) <2041} Now by Markov’s inequality,

N(Al—o—l) < 2l+1||fm+1 _ fm ”p < 2l+147(l+1) _ 27(l+1).

Therefore, the series ) 11(A;) converges, and in particular lim, o Y ,;~.,, u(41) =
0. B
p(limsup A;) = p(NS2y Uisn A1) < p(Uisn4;) < ZH(AZ) =0.

I>n

In other words, for all but finitely many Is, | fn,,, — fn,| < 270D, prace. In
particular, > 7% | fn.,, — fn,| converges pi- a.e. or, the series whose partial sums
appear in (6) converges absolutely, p-a.e. As a result, limy_,o fn, converges
p-a.e. Denote its limit by f.

3. Candidate in £P. This is basically Fatou’s lemma which states:

liminf/|fnk|pd,u2/liminf|fnk\pdu:/\f|pdu.

As a result, liminf ||f,, ||, > || fllp. The lefthand side is finite because our
sequence is Cauchy hence bounded.

4. Convergence of subsequence in LP. Fix some k. Then repeating the
argiment from the previous step,

timint [ |fo = fu, P> [ 1oy~ P
That is iminf;_,o || fr, — frillp = | far — fllp- Therefore,

sup | fn, — fnker”p > || for — szw
meN



As k — oo the lefthand side tends to 0 as our original sequence is Cauchy,
and therefore limy_, || fn, — fllp = 0.

5. Convergence of full sequence. We have finally arrived at our last
step. Sit back and relax. It’s all triangle inequality. For every n > n; there
exists a unique k such that ny < n < ngy1. Now

”fn - f”p < an - fm-,”p + ”fnk - f”p‘

As n — 00, k = oo. Therefore, the first summand on the righthand side tends
to 0 because our sequence is Cauchy. The second also tends to 0 because of the
previous step. Done. O

4 L=

In this section we complete the description of the LP spaces by introducing
the space L*°. We begin with some motivation. A simple calculus exer-

cise shows that if aq,...,aq are real numbers then limzHoo(E:dn:1 |an|p)1/p =
maxn=1... 4 |an|. If we equip the finite set {1,...,d} with the counting norm,
then the lefthand side can be viewed as the limit of the LP-norm of the function
n — a, as p — oo. The normed space (L™, | - ||oo) will be a generalization of
this maximum.

For f € L, let

[flloe = inf{L : u(|f] > L) = 0}.

Of course, ||f|lco < sup|f]. A good example to remember is one we have seen
before. Consider a Lebesgue measure. Then ||1gllec = 0 < 1 = sup|1g. As
before we define £ as {f € L : || f]loc < 00}

L> is a vector space with respect to addition and scalar multiplication of
functions and || - || is a semi-norm. The proofs are much simpler than for
| - |lp, where we had to get through Holder’s inequality to obtain the triangle
inequality, Minkowski’s inequality. Let’s show the triangle inequality for || - ||oo-
Let f,g € £, and let My and M, be any real numbers strictly larger than
|| flloo and [|g||oc, respectively. Then p(|f| > My) = 0 and p(|g] > M,) = 0.
If | f + g| > My + My, then |f| + |g| > My + M,, which implies |f| > My or
lg| > M,. Therefore the set {|f + g| > M; + M,} is contained in the set of
measure zero {f > My} U {g > M,}. This implies

1f +9lloe < My + M.

Taking the infimum over allowed values of My and M, and using the definition
of || - || then gives
1f + gllso < [1flloo + llglloo-

Functions in £ are also called essentially bounded (with respect to the
given measure): bounded, with the exception of a set of measure zero. Consider
again the Lebesgue measure. Let f(z) = ﬁ if z is nonzero rational and 0

otherwise. Then || f]lcoc = 0, although f is unbounded. It is essentially bounded.



We note that for f € L2, |f| < ||flleo p-a-e.

Repeating the construction of LP we obtain the normed space (L, || - ||c0)
where each element in L™ is of the form {f +h: f € L2 h =0, ua.e.}, a set
we denote by [f], as usual.

Next we want to prove that (L, || - ||s) is complete. This is much easier
than for LP, as convergence in this space is uniform convergence, except on a
set of measure zero. Indeed, let ([f,] : n € N) be a Cauchy sequence. Let A,, =
{171 > fllc} and let A = U2, An- Then ju(A) = 0 and on A°, |ful < || fulle.
In particular for every w € A° and every m,n € N we have that

Therefore, for w € A°, the numerical sequence (fy,(w) : n € N) is Cauchy (in R)
and therefore converges to some limit f(w). Moreover for all w € A°,

|fn - f| = lim |fn - fn+m| < sup an - fn+m||ooa

therefore the convergence is uniform on A€, and since u(A) = 0, this implies

The last result we would like to prove is Holder’s inequality. This is even

simpler. Let f € £! and g € L. Then

I/fgdul S/\flllglloodu: £ 1l1llglloo-



