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1 Intro

Our starting point is a measure space (Ω,F , µ). As usual, we will assume this
measure space is complete and to avoid trivialities, we will assume that there
exists A ∈ F with µ(A) ∈ (0,∞).

We proved that the sum of two measurable functions is measurable and that
a constant times a measurable function is measurable. Therefore the set L of
real-valued measurable functions is a vector space with respect to pointwise
addition and scalar multiplication. Note that this structure has nothing to do
with the measure, just the sigma-algebra.

For f ∈ L and p ∈ [1,∞). Define

∥f∥p = (

∫
|f |pdµ)

1
p ,

and
Lp = {f ∈ L : ∥f∥p < ∞}.

In what follows we will always write q for the conjugate exponent to p, defined
through the relation:

1

p
+

1

q
= 1. (1)

For example if p = 2, q = 2 and if p = 3, q = 3
2 , etc.

Note that q ∈ (1,∞], and that q = ∞ if and only if p = 1. The fact that the
conjugate of p = 1 is q = ∞ suggests (as will become apparent through Holder’s
inequality, Theorem 2.2) that we may want to introduce and define L∞. We
will do that in Section 4.

The following identity is a restatement of the relation (1):

p− 1 =
p

q
.

2 Two Inequalities: Holder & Minkowski

Holder’s inequality is among the most important inequalities in analysis. It is
a generalization of the Cauchy-schwarz inequality. It is derived from one of the
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oldest tricks in the playbook, the Arithmetic-Geometric inequality.

Proposition 2.1 (Arithmetic-Geometric Inequality). Let α, β be nonnegative
and λ ∈ (0, 1). Then

αλβ1−λ ≤ λα+ (1− λ)β

with a strict inequality if and only if α ̸= β.

The proof is equivalent to the strict convexity of the exponential function.
Indeed if αβ = 0 the inequality is trivial and otherwise the lefthand side is
eλ lnα+(1−λ) ln β , and the strict convexity of the exponential implies this is ≤
λelnα + (1− λ)eln β , with equality if and only if lnα = lnβ.

Theorem 2.2 (Holder’s Inequality). Let p ∈ (1,∞) and let q be its conjugate
from (1). Let f and g be measurable and nonnegative. Then∫

fgdµ ≤ ∥f∥p∥g∥q,

where the righthand side is defined as 0 if one of the factors is = 0. If f ∈ Lp

and g ∈ Lq, then an equality holds if and only f = 0 µ-a.e., g = 0 µ-a.e. or
there exists some C > 0 such that fp = Cgq µ-a.e.

We note that the condition for equality can be restated as fp and gq are
linearly dependent, µ-a.e.

Proof. We observe that if ∥f∥p = 0 then f = 0 µ-a.e., and consequently fg = 0
µ-a.e., and therefore both the lefthand side and the righthand side are zero. The
same holds if ∥g∥q = 0.

We can therefore assume that both ∥f∥p and ∥g∥q are strictly positive. If
any of these is infinite, then the inequality is trivial.

We are left with the case ∥f∥p, ∥g∥q ∈ (0,∞). We will make yet another
reduction which will save some work. Let F = f/∥f∥p and G = g/∥g∥q. Then∫

fgdµ = ∥f∥p∥g∥q
∫

FGdµ.

Therefore Holder’s inequality is equivalent to∫
FGdµ ≤ 1 (2)

We note that the definition of F and G, ∥F∥p = ∥G∥q = 1. Let’s now use the
AGM, Proposition 2.1, with λ = 1

p and therefore 1 − λ = 1
q , α = F p(ω) and

β = Gp(ω), which then gives

(FG)(ω) ≤ 1

p
F p(ω) +

1

q
Gq(ω). (3)

with a strict inequality on the setA = {ω : F p(ω) ̸= Gq(ω)}. Now integrate both
sides of (3) to obtain (2). An equality holds if and only µ(A) = 0, equivalently

2



Ac µ-a.e. Now Ac = {fp =
∥f∥p

p

∥g∥q
q
gq}, which implies that for some C > 0, fp =

Cgq, µ-a.e. Integrating the last equality gives ∥f∥pp = C∥g∥qq, or C = ∥f∥pp/∥g∥qq,
that is C is determined, and so that if for some C > 0, fp = Cgq µ-a.e., then
Ac µ-a.e., and so an equality holds in Holder’s inequality.

A very important corollary to Holder’s inequality is the following, the trian-
gle inequality for ∥ · ∥p:

Theorem 2.3 (Minkowski’s Inequality). Let p ∈ (1,∞) and let f, g ∈ Lp. Then
∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Clearly if f ∈ Lp and c ∈ R, then cf ∈ Lp. Minkowski’s inequality implies
that if f, g ∈ Lp, then f + g ∈ Lp, and so we obtain the following:

Corollary 2.4. Lp is a vector space with respect to pointwise addition and
scalar multiplication.

Proof. If the lefthand side is zero there is nothing to prove. We will proceed
assuming ∥f + g∥p > 0 (apriori it may be infinite). To get the lefthand side we
need to integrate the function |f + g|p. Use the triangle inequality to obtain

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1. (4)

Now |f + g| ≤ 2max(|f |, |g|), and so

|f + g|p−1 ≤ 2p−1 max(|f |p−1, |g|p−1).

Recalling that p− 1 = p
q , it follows that

(|f + g|p−1)q ≤ 2p max(|f |p, |g|p) ≤ 2p(|f |p + |g|p).

Since f, g ∈ Lp, |f + g|p−1 ∈ Lq. Now,

∥|f + g|p−1∥qq =

∫
(|f + g|p−1)q =

∫
|f + g|pdµ = ∥f + g∥pp,

that is
∥|f + g|p−1∥q = ∥f + g∥p/qp . (5)

Now integrate both sides of (4)

∥f + g∥pp =

∫
|f + g|pdµ

≤
∫

|f ||f + g|p−1dµ+

∫
|g||f + g|p−1dµ

≤ ∥f∥p∥f + g|p/qp + ∥g∥p∥f + g∥p/qp ,

where the last line was obtained from Holder’s inequality and (5). Divide by

sides by ∥f + g∥p/qp = ∥f + g∥p−1
p to obtain the result.
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3 Lp, a Complete Normed Space

3.1 Normed Spaces

Recall the following definition:

Definition 1. A semi-norm ∥·∥ on a vector space V is a mapping ∥·∥ → [0,∞)
with the following properties

1. (homogeneity) ∥cv∥ = |c|∥v∥, for all c ∈ R, and v ∈ V .

2. (triangle inequality) ∥v + u∥ ≤ ∥v∥+ ∥u∥ for all v, u ∈ V .

A semi-norm is a norm if in addition it satisfies

0. ∥v∥ = 0 if and only if v = 0.

If ∥ · ∥ is a norm, then we call (V, ∥ · ∥) a normed space.

Now ∥·∥p is a semi-norm on the vector space Lp. In general, it is not a norm.
Consider the Lebesgue measure: ∥1Q∥p = ∥0∥p, though these two functions are
distinct elements of L. We remedy this through a simple construction of a
quotient space.

Suppose that V is a vector space and ∥ · ∥ : V → [0,∞) is a semi-norm on
V . Let V0 = {v ∈ V : ∥v∥ = 0}. Note that V0 is automatically a subspace of V
because of the semi-norm properties.

For every v ∈ V , let v + V0 = {v + v0 : v0 ∈ V0}. Then for v, v′ ∈ V either
v − v′ ∈ V0, in which case v + V0 = v′ + V0 or v − v′ ̸∈ V0, in which case
(v+V0)∩ (v′ +V0) = ∅ (check!). Let V/V0 be the set {v+V0 : v ∈ V } (in other
words: the relation v− v′ ∈ V0 is an equivalence relation on V , and V/V0 is the
set of equivalence classes). We call V/V0 the quotient of V over V0.

We can equip the quotient space V/V0 with a vector space structure in the
most obvious way: the addition of (v+ V0) + (u+ V0) is defined as (u+ v) + V0

and the scalar multiplication c(v+V0) is defined as (cv)+V0. The zero element
in this vector space, 0V/V0

, is 0 + V0. Abusing notation, extend ∥ · ∥ to V/V0 by
letting ∥v+ V0∥ = ∥v∥. We will show that this mapping is well defined and is a
norm.

First, let’s show it is well-defined. Suppose v + V0 = v′ + V0, then ∥v∥ =
∥v′ + (v − v′)︸ ︷︷ ︸

∈V0

∥ ≤ ∥v′∥ + ∥v − v′∥ = ∥v′∥, due to the triangle inequality. As

the inequality holds with the roles of v and v′ interchanged, it follows that
∥v′∥ = ∥v∥ and therefore the mapping is well-defined.

It immediately follows from the definition that ∥ · ∥ is a semi-norm on V/V0.
To show it is a norm, observe that ∥v + V0∥ = 0 if and only if ∥v∥ = 0 if and
only if v ∈ V0 if and only if v + V0 = 0V/V0

. Therefore (V/V0, ∥ · ∥) is a normed
space.

Going back to our main topic. The mapping ∥ · ∥p is a semi-norm on Lp.
Indeed, from the definiton, if f ∈ Lp and c ∈ R, then ∥cf∥p = |c|∥f∥p. The
triangle inequality for ∥·∥p is Minkowski’s inequality, Theorem 2.3. The normed
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space (Lp/Lp
0, ∥ ·∥p) obtained through the construction above is called Lp. Here

Lp
0 = {f ∈ Lp : ∥f∥p = 0}, namely, all functions in Lp (equivalently, L), which

are 0 µ-a.e. An element in Lp is a set of the form {f + h : h = 0, µ − a.e.},
namely all functions equal to f µ-a.e. It would be convenient to denote this
element by [f ].

We turn to a very important property of our newly minted normed space,
completeness.

Definition 2. Let (V, ∥ · ∥) be a normed space.

1. A sequence (vn : n ∈ N) in V is convergent if there exists v ∈ V such that
limn→∞ ∥vn − v∥ = 0, in which case we say that the sequence has a limit
v or that the sequence converges to v, denoted by limn→∞ vn = v.

2. A sequence (vn : n ∈ N) is a Cauchy sequence if for every ϵ > 0 there
exists N = N(ϵ) such that ∥vn − vn′∥ ≤ ϵ for all n, n′ ≥ N . Equivalently,
limn→∞ supm∈N ∥vn+m − vn∥ = 0.

3. (V, ∥ · ∥) is complete if every Cauchy sequence is convergent.

Note that it is very easy to see that every convergent sequence is Cauchy.
Yet not every normed space is complete. For example, Rd with the Euclidean
norm ∥(x1, . . . , xd)∥ =

√
x2
1 + · · ·+ x2

d is complete, yet Qd with the same norm
is clearly not complete. Note that the former is L2 with µ being the counting
measure on {1, . . . , d}.

We also note that it immediately follows from the definition that every
Cauchy sequence is bounded in the following sense. If (vn : n ∈ N) is Cauchy,
then supn ∥vn∥ < ∞. Indeed, pick n1 such that supm ∥vn1+m − vn1

} ≤ 1. Then
for n ≤ n1, ∥vn∥ ≤ max(∥v1∥, . . . , ∥vn1

∥) and for n > n1, ∥vn∥ ≤ ∥vn1
∥+ 1.

3.2 Completeness of Lp

In the last section we constructed a normed vector space (Lp, ∥ · ∥p). We briefly
describe its structure. For every f ∈ Lp, let [f ] denote all functions in Lp

(or more generally L) which are equal to f µ-a.e. Each of these sets is an
element in Lp. Addition in Lp and scalar multliplication are defined by the
rules [f + g] = [f ] + [g] and c[f ] = [cf ]. The norm of [f ] is ∥f∥p. We prove the
following:

Theorem 3.1. (Lp, ∥ · ∥p) is a complete metric space.

Proof. We only need to prove completeness.
1. Prep. Let ([fn] : n ∈ N) be a sequence in Lp. Clearly, there exists

[f ] ∈ Lp such that limn→∞[fn] = [f ] if and only if limn→∞ ∥[fn] − [f ]∥p = 0.
From the definition of the norm ∥ · ∥p on Lp, the latter holds if and only if
limn→∞ ∥fn − f∥p = 0 (of course we could take instead any f ′

n ∈ [fn], f
′ ∈ [f ]).
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2. Candidate for f . Yes, we find a candidate for f . Take any subsequence
(nk : k ∈ N) tending to infinity. Then

fnk
= fn1

+

k−1∑
l=1

(fnl+1
− fnl

). (6)

Therefore,

|fnk
| ≤ |fn1 |+

k−1∑
l=1

|fnl+1
− fnl

|.

It follows from Minkowski’s inequality, Theorem 2.3, that

∥fnk
∥p ≤ ∥fn1

∥p +
k−1∑
l=1

∥fnl+1
− fnl

∥p.

That’s true for any subsequence. We now pick a subsequence so that (fnl
: l ∈ N)

converges µ-a.e. Pick n1 = min{n : supm ∥fn+m − fn∥p < 4}, and continue
inductively, letting nl+1 = min{n > nl : supm ∥fn+m − fn∥p < 4−(l+1)}. This is
possible due to the definition of a Cauchy sequence.

Let Al+1 = {|fnl+1
− fnl

| ≥ 2−(l+1)) ≤ 2l+1}. Now by Markov’s inequality,

µ(Al+1) ≤ 2l+1∥fnl+1
− fnl

∥p ≤ 2l+14−(l+1) = 2−(l+1).

Therefore, the series
∑

µ(Al) converges, and in particular limn→∞
∑

l≥n µ(Al) =
0.

µ(lim supAl) = µ(∩∞
n=1 ∪l≥n Al) ≤ µ(∪l≥nAl) ≤

∑
l≥n

µ(Al) = 0.

In other words, for all but finitely many l’s, |fnl+1
−fnl

| < 2−(l+1), µ-a.e. In
particular,

∑∞
l=1 |fnl+1

−fnl
| converges µ- a.e. or, the series whose partial sums

appear in (6) converges absolutely, µ-a.e. As a result, limk→∞ fnk
converges

µ-a.e. Denote its limit by f .
3. Candidate in Lp. This is basically Fatou’s lemma which states:

lim inf

∫
|fnk

|pdµ ≥
∫

lim inf |fnk
|pdµ =

∫
|f |pdµ.

As a result, lim inf ∥fnk
∥p ≥ ∥f∥p. The lefthand side is finite because our

sequence is Cauchy hence bounded.
4. Convergence of subsequence in Lp. Fix some k. Then repeating the

argiment from the previous step,

lim inf
l→∞

∫
|fnl

− fnk
|pdµ ≥

∫
|fnk

− f |pdµ.

That is lim inf l→∞ ∥fnk
− fnl

∥p ≥ ∥fnk
− f∥p. Therefore,

sup
m∈N

∥fnk
− fnk+m∥p ≥ ∥fnk

− f∥p,
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As k → ∞ the lefthand side tends to 0 as our original sequence is Cauchy,
and therefore limk→∞ ∥fnk

− f∥p = 0.
5. Convergence of full sequence. We have finally arrived at our last

step. Sit back and relax. It’s all triangle inequality. For every n ≥ n1 there
exists a unique k such that nk ≤ n < nk+1. Now

∥fn − f∥p ≤ ∥fn − fnk
∥p + ∥fnk

− f∥p.

As n → ∞, k → ∞. Therefore, the first summand on the righthand side tends
to 0 because our sequence is Cauchy. The second also tends to 0 because of the
previous step. Done.

4 L∞

In this section we complete the description of the Lp spaces by introducing
the space L∞. We begin with some motivation. A simple calculus exer-
cise shows that if a1, . . . , ad are real numbers then limp→∞(

∑d
n=1 |an|p)1/p =

maxn=1...,d |an|. If we equip the finite set {1, . . . , d} with the counting norm,
then the lefthand side can be viewed as the limit of the Lp-norm of the function
n → an as p → ∞. The normed space (L∞, ∥ · ∥∞) will be a generalization of
this maximum.

For f ∈ L, let
∥f∥∞ = inf{L : µ(|f | > L) = 0}.

Of course, ∥f∥∞ ≤ sup |f |. A good example to remember is one we have seen
before. Consider a Lebesgue measure. Then ∥1Q∥∞ = 0 < 1 = sup |1Q. As
before we define L∞ as {f ∈ L : ∥f∥∞ < ∞}.

L∞ is a vector space with respect to addition and scalar multiplication of
functions and ∥ · ∥∞ is a semi-norm. The proofs are much simpler than for
∥ · ∥p, where we had to get through Holder’s inequality to obtain the triangle
inequality, Minkowski’s inequality. Let’s show the triangle inequality for ∥ · ∥∞.
Let f, g ∈ L∞, and let Mf and Mg be any real numbers strictly larger than
∥f∥∞ and ∥g∥∞, respectively. Then µ(|f | > Mf ) = 0 and µ(|g| > Mg) = 0.
If |f + g| > Mf + Mg, then |f | + |g| > Mf + Mg, which implies |f | > Mf or
|g| > Mg. Therefore the set {|f + g| > Mf + Mg} is contained in the set of
measure zero {f > Mf} ∪ {g > Mg}. This implies

∥f + g∥∞ ≤ Mf +Mg.

Taking the infimum over allowed values of Mf and Mg and using the definition
of ∥ · ∥∞ then gives

∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞.

Functions in L∞ are also called essentially bounded (with respect to the
given measure): bounded, with the exception of a set of measure zero. Consider
again the Lebesgue measure. Let f(x) = 1

|x| if x is nonzero rational and 0

otherwise. Then ∥f∥∞ = 0, although f is unbounded. It is essentially bounded.
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We note that for f ∈ L∞, |f | ≤ ∥f∥∞ µ-a.e.
Repeating the construction of Lp we obtain the normed space (L∞, ∥ · ∥∞)

where each element in L∞ is of the form {f + h : f ∈ L∞, h = 0, µ a.e.}, a set
we denote by [f ], as usual.

Next we want to prove that (L∞, ∥ · ∥∞) is complete. This is much easier
than for Lp, as convergence in this space is uniform convergence, except on a
set of measure zero. Indeed, let ([fn] : n ∈ N) be a Cauchy sequence. Let An =
{|f | > ∥f∥∞} and let A = ∪∞

n=1An. Then µ(A) = 0 and on Ac, |fn| ≤ ∥fn∥∞.
In particular for every ω ∈ Ac and every m,n ∈ N we have that

|fn − fm|(ω) ≤ ∥fn − fm∥∞.

Therefore, for ω ∈ Ac, the numerical sequence (fn(ω) : n ∈ N) is Cauchy (in R)
and therefore converges to some limit f(ω). Moreover for all ω ∈ Ac,

|fn − f | = lim
m→∞

|fn − fn+m| ≤ sup
m∈N

∥fn − fn+m∥∞,

therefore the convergence is uniform on Ac, and since µ(A) = 0, this implies
limn→∞ ∥fn − f∥∞ = 0.

The last result we would like to prove is Holder’s inequality. This is even
simpler. Let f ∈ L1 and g ∈ L∞. Then

|
∫

fgdµ| ≤
∫

|f |∥g∥∞dµ = ∥f∥1∥g∥∞.
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