MATH5111S24: L^p Spaces (Prep for 03/18 & 03/20 Lectures)

Iddo Ben-Ari

1 Intro

Our starting point is a measure space $(\Omega, \mathcal{F}, \mu)$. As usual, we will assume this measure space is complete and to avoid trivialities, we will assume that there exists $A \in \mathcal{F}$ with $\mu(A) \in (0, \infty)$.

We proved that the sum of two measurable functions is measurable and that a constant times a measurable function is measurable. Therefore the set $\mathcal L$ of real-valued measurable functions is a vector space with respect to pointwise addition and scalar multiplication. Note that this structure has nothing to do with the measure, just the sigma-algebra.

For $f \in \mathcal{L}$ and $p \in [1,\infty)$. Define

$$
||f||_p = (\int |f|^p d\mu)^{\frac{1}{p}},
$$

and

$$
\mathcal{L}^p = \{ f \in \mathcal{L} : ||f||_p < \infty \}.
$$

In what follows we will always write q for the conjugate exponent to p , defined through the relation:

$$
\frac{1}{p} + \frac{1}{q} = 1.
$$
 (1)

For example if $p = 2$, $q = 2$ and if $p = 3$, $q = \frac{3}{2}$, etc.

Note that $q \in (1,\infty]$, and that $q = \infty$ if and only if $p = 1$. The fact that the conjugate of $p = 1$ is $q = \infty$ suggests (as will become apparent through Holder's inequality, Theorem 2.2) that we may want to introduce and define \mathcal{L}^{∞} . We will do that in Section 4.

The following identity is a restatement of the relation (1):

$$
p-1=\frac{p}{q}.
$$

2 Two Inequalities: Holder & Minkowski

Holder's inequality is among the most important inequalities in analysis. It is a generalization of the Cauchy-schwarz inequality. It is derived from one of the oldest tricks in the playbook, the Arithmetic-Geometric inequality.

Proposition 2.1 (Arithmetic-Geometric Inequality). Let α, β be nonnegative and $\lambda \in (0,1)$. Then

$$
\alpha^{\lambda}\beta^{1-\lambda} \leq \lambda\alpha + (1-\lambda)\beta
$$

with a strict inequality if and only if $\alpha \neq \beta$.

The proof is equivalent to the strict convexity of the exponential function. Indeed if $\alpha\beta = 0$ the inequality is trivial and otherwise the lefthand side is $e^{\lambda \ln \alpha + (1-\lambda) \ln \beta}$, and the strict convexity of the exponential implies this is \leq $\lambda e^{\ln \alpha} + (1 - \lambda)e^{\ln \beta}$, with equality if and only if $\ln \alpha = \ln \beta$.

Theorem 2.2 (Holder's Inequality). Let $p \in (1,\infty)$ and let q be its conjugate from (1). Let f and g be measurable and nonnegative. Then

$$
\int fg d\mu \leq \|f\|_p \|g\|_q,
$$

where the righthand side is defined as 0 if one of the factors is = 0. If $f \in \mathcal{L}^p$ and $g \in \mathcal{L}^q$, then an equality holds if and only $f = 0$ μ -a.e., $g = 0$ μ -a.e. or there exists some $C > 0$ such that $f^p = Cg^q$ μ -a.e.

We note that the condition for equality can be restated as f^p and g^q are linearly dependent, μ -a.e.

Proof. We observe that if $||f||_p = 0$ then $f = 0$ μ -a.e., and consequently $fg = 0$ μ -a.e., and therefore both the lefthand side and the righthand side are zero. The same holds if $||g||_q = 0$.

We can therefore assume that both $||f||_p$ and $||g||_q$ are strictly positive. If any of these is infinite, then the inequality is trivial.

We are left with the case $||f||_p, ||g||_q \in (0, \infty)$. We will make yet another reduction which will save some work. Let $F = f/||f||_p$ and $G = g/||g||_q$. Then

$$
\int fg d\mu = \|f\|_p \|g\|_q \int FG d\mu.
$$

Therefore Holder's inequality is equivalent to

$$
\int FG d\mu \le 1\tag{2}
$$

We note that the definition of F and G, $||F||_p = ||G||_q = 1$. Let's now use the AGM, Proposition 2.1, with $\lambda = \frac{1}{p}$ and therefore $1 - \lambda = \frac{1}{q}$, $\alpha = F^p(\omega)$ and $\beta = G^p(\omega)$, which then gives

$$
(FG)(\omega) \le \frac{1}{p}F^p(\omega) + \frac{1}{q}G^q(\omega).
$$
\n(3)

with a strict inequality on the set $A = {\omega : F^p(\omega) \neq G^q(\omega)}$. Now integrate both sides of (3) to obtain (2). An equality holds if and only $\mu(A) = 0$, equivalently

 A^c μ -a.e. Now $A^c = \{f^p = \frac{\|f\|_p^p}{\|g\|_q^q}g^q\}$, which implies that for some $C > 0$, $f^p =$ Cg^q , μ -a.e. Integrating the last equality gives $||f||_p^p = C||g||_q^q$, or $C = ||f||_p^p / ||g||_q^q$, that is C is determined, and so that if for some $C > 0$, $f^{\hat{p}} = Cg^q$ μ -a.e., then A^c μ -a.e., and so an equality holds in Holder's inequality. \Box

A very important corollary to Holder's inequality is the following, the triangle inequality for $\|\cdot\|_p$:

Theorem 2.3 (Minkowski's Inequality). Let $p \in (1,\infty)$ and let $f, g \in \mathcal{L}^p$. Then $||f + g||_p \leq ||f||_p + ||g||_p.$

Clearly if $f \in \mathcal{L}^p$ and $c \in \mathbb{R}$, then $cf \in \mathcal{L}^p$. Minkowski's inequality implies that if $f, g \in \mathcal{L}^p$, then $f + g \in \mathcal{L}^p$, and so we obtain the following:

Corollary 2.4. \mathcal{L}^p is a vector space with respect to pointwise addition and scalar multiplication.

Proof. If the lefthand side is zero there is nothing to prove. We will proceed assuming $||f + g||_p > 0$ (apriori it may be infinite). To get the lefthand side we need to integrate the function $|f + g|^p$. Use the triangle inequality to obtain

$$
|f+g|^{p} = |f+g||f+g|^{p-1} \le (|f|+|g|)|f+g|^{p-1}.
$$
 (4)

Now $|f + g| \leq 2 \max(|f|, |g|)$, and so

$$
|f+g|^{p-1}\leq 2^{p-1}\max(|f|^{p-1},|g|^{p-1}).
$$

Recalling that $p-1=\frac{p}{q}$, it follows that

$$
(|f+g|^{p-1})^q\leq 2^p\max(|f|^p,|g|^p)\leq 2^p(|f|^p+|g|^p).
$$

Since $f, g \in \mathcal{L}^p$, $|f + g|^{p-1} \in \mathcal{L}^q$. Now,

$$
\| |f+g|^{p-1} \|_q^q = \int (|f+g|^{p-1})^q = \int |f+g|^p d\mu = \|f+g\|_p^p,
$$

that is

$$
\| |f + g|^{p-1} \|_q = \| f + g \|_p^{p/q}.
$$
\n(5)

Now integrate both sides of (4)

$$
||f + g||_p^p = \int |f + g|^p d\mu
$$

\n
$$
\leq \int |f||f + g|^{p-1} d\mu + \int |g||f + g|^{p-1} d\mu
$$

\n
$$
\leq ||f||_p ||f + g|_p^{p/q} + ||g||_p ||f + g||_p^{p/q},
$$

where the last line was obtained from Holder's inequality and (5). Divide by sides by $||f+g||_p^{p/q} = ||f+g||_p^{p-1}$ to obtain the result. \Box

3 L^p , a Complete Normed Space

3.1 Normed Spaces

Recall the following definition:

Definition 1. A semi-norm $\|\cdot\|$ on a vector space V is a mapping $\|\cdot\| \to [0,\infty)$ with the following properties

- 1. (homogeneity) $||cv|| = |c|| ||v||$, for all $c \in \mathbb{R}$, and $v \in V$.
- 2. (triangle inequality) $||v+u|| < ||v|| + ||u||$ for all $v, u \in V$.

A semi-norm is a norm if in addition it satisfies

0. $||v|| = 0$ if and only if $v = 0$.

If $\|\cdot\|$ is a norm, then we call $(V, \|\cdot\|)$ a normed space.

Now $\lVert \cdot \rVert_p$ is a semi-norm on the vector space \mathcal{L}^p . In general, it is not a norm. Consider the Lebesgue measure: $||\mathbf{1}_{\mathbb{Q}}||_p = ||0||_p$, though these two functions are distinct elements of \mathcal{L} . We remedy this through a simple construction of a quotient space.

Suppose that V is a vector space and $\|\cdot\|: V \to [0, \infty)$ is a semi-norm on V. Let $V_0 = \{v \in V : ||v|| = 0\}$. Note that V_0 is automatically a subspace of V because of the semi-norm properties.

For every $v \in V$, let $v + V_0 = \{v + v_0 : v_0 \in V_0\}$. Then for $v, v' \in V$ either $v - v' \in V_0$, in which case $v + V_0 = v' + V_0$ or $v - v' \notin V_0$, in which case $(v+V_0) \cap (v'+V_0) = \emptyset$ (check!). Let V/V_0 be the set $\{v+V_0 : v \in V\}$ (in other words: the relation $v - v' \in V_0$ is an equivalence relation on V, and V/V_0 is the set of equivalence classes). We call V/V_0 the quotient of V over V_0 .

We can equip the quotient space V/V_0 with a vector space structure in the most obvious way: the addition of $(v + V_0) + (u + V_0)$ is defined as $(u + v) + V_0$ and the scalar multiplication $c(v + V_0)$ is defined as $(cv) + V_0$. The zero element in this vector space, $0_{V/V_0}$, is $0 + V_0$. Abusing notation, extend $\|\cdot\|$ to V/V_0 by letting $||v + V_0|| = ||v||$. We will show that this mapping is well defined and is a norm.

First, let's show it is well-defined. Suppose $v + V_0 = v' + V_0$, then $||v|| =$ $||v' + (v - v')||$ $\overline{\epsilon V_0}$ $\in V_0$ $|| \leq ||v'|| + ||v - v'|| = ||v'||$, due to the triangle inequality. As

the inequality holds with the roles of v and v' interchanged, it follows that $||v'|| = ||v||$ and therefore the mapping is well-defined.

It immediately follows from the definition that $\|\cdot\|$ is a semi-norm on V/V_0 . To show it is a norm, observe that $||v + V_0|| = 0$ if and only if $||v|| = 0$ if and only if $v \in V_0$ if and only if $v + V_0 = 0_{V/V_0}$. Therefore $(V/V_0, \|\cdot\|)$ is a normed space.

Going back to our main topic. The mapping $\|\cdot\|_p$ is a semi-norm on \mathcal{L}^p . Indeed, from the definiton, if $f \in \mathcal{L}^p$ and $c \in \mathbb{R}$, then $||cf||_p = |c||/||f||_p$. The triangle inequality for $\|\cdot\|_p$ is Minkowski's inequality, Theorem 2.3. The normed

space $(\mathcal{L}^p/\mathcal{L}_0^p, \|\cdot\|_p)$ obtained through the construction above is called L^p . Here $\mathcal{L}_0^p = \{f \in \mathcal{L}^p : ||f||_p = 0\}$, namely, all functions in \mathcal{L}^p (equivalently, \mathcal{L}), which are 0 μ -a.e. An element in L^p is a set of the form $\{f + h : h = 0, \ \mu - \text{ a.e.}\},\$ namely all functions equal to f μ -a.e. It would be convenient to denote this element by $[f]$.

We turn to a very important property of our newly minted normed space, completeness.

Definition 2. Let $(V, \|\cdot\|)$ be a normed space.

- 1. A sequence $(v_n : n \in \mathbb{N})$ in V is convergent if there exists $v \in V$ such that $\lim_{n\to\infty} ||v_n - v|| = 0$, in which case we say that the sequence has a limit v or that the sequence converges to v, denoted by $\lim_{n\to\infty} v_n = v$.
- 2. A sequence $(v_n : n \in \mathbb{N})$ is a Cauchy sequence if for every $\epsilon > 0$ there exists $N = N(\epsilon)$ such that $||v_n - v_{n'}|| \leq \epsilon$ for all $n, n' \geq N$. Equivalently, $\lim_{n\to\infty} \sup_{m\in\mathbb{N}} ||v_{n+m} - v_n|| = 0.$
- 3. $(V, \|\cdot\|)$ is complete if every Cauchy sequence is convergent.

Note that it is very easy to see that every convergent sequence is Cauchy. Yet not every normed space is complete. For example, \mathbb{R}^d with the Euclidean norm $||(x_1,\ldots,x_d)|| = \sqrt{x_1^2 + \cdots + x_d^2}$ is complete, yet \mathbb{Q}^d with the same norm is clearly not complete. Note that the former is \mathcal{L}^2 with μ being the counting measure on $\{1, \ldots, d\}$.

We also note that it immediately follows from the definition that every Cauchy sequence is bounded in the following sense. If $(v_n : n \in \mathbb{N})$ is Cauchy, then $\sup_n ||v_n|| < \infty$. Indeed, pick n_1 such that $\sup_m ||v_{n_1+m} - v_{n_1}|| \leq 1$. Then for $n \leq n_1, \|v_n\| \leq \max(\|v_1\|, \ldots, \|v_{n_1}\|)$ and for $n > n_1, \|v_n\| \leq \|v_{n_1}\| + 1$.

3.2 Completeness of L^p

In the last section we constructed a normed vector space $(L^p, \|\cdot\|_p)$. We briefly describe its structure. For every $f \in \mathcal{L}^p$, let $[f]$ denote all functions in \mathcal{L}^p (or more generally \mathcal{L}) which are equal to f μ -a.e. Each of these sets is an element in L^p . Addition in L^p and scalar multliplication are defined by the rules $[f + g] = [f] + [g]$ and $c[f] = [cf]$. The norm of $[f]$ is $||f||_p$. We prove the following:

Theorem 3.1. $(L^p, \|\cdot\|_p)$ is a complete metric space.

Proof. We only need to prove completeness.

1. Prep. Let $([f_n] : n \in \mathbb{N})$ be a sequence in L^p . Clearly, there exists $[f] \in L^p$ such that $\lim_{n\to\infty} [f_n] = [f]$ if and only if $\lim_{n\to\infty} ||[f_n] - [f]||_p = 0$. From the definition of the norm $\|\cdot\|_p$ on L^p , the latter holds if and only if $\lim_{n\to\infty}||f_n-f||_p=0$ (of course we could take instead any $f'_n\in[f_n], f'\in[f]).$

2. Candidate for f. Yes, we find a candidate for f . Take any subsequence $(n_k : k \in \mathbb{N})$ tending to infinity. Then

$$
f_{n_k} = f_{n_1} + \sum_{l=1}^{k-1} (f_{n_{l+1}} - f_{n_l}).
$$
\n(6)

Therefore,

$$
|f_{n_k}| \le |f_{n_1}| + \sum_{l=1}^{k-1} |f_{n_{l+1}} - f_{n_l}|.
$$

It follows from Minkowski's inequality, Theorem 2.3, that

$$
||f_{n_k}||_p \le ||f_{n_1}||_p + \sum_{l=1}^{k-1} ||f_{n_{l+1}} - f_{n_l}||_p.
$$

That's true for any subsequence. We now pick a subsequence so that $(f_{n_l}: l \in \mathbb{N})$ converges μ -a.e. Pick $n_1 = \min\{n : \sup_m ||f_{n+m} - f_n||_p < 4\}$, and continue inductively, letting $n_{l+1} = \min\{n > n_l : \sup_m ||f_{n+m} - f_n||_p < 4^{-(l+1)}\}$. This is possible due to the definition of a Cauchy sequence.

Let $A_{l+1} = \{ |f_{n_{l+1}} - f_{n_l}| \geq 2^{-(l+1)} \} \leq 2^{l+1} \}.$ Now by Markov's inequality,

$$
\mu(A_{l+1}) \le 2^{l+1} \|f_{n_{l+1}} - f_{n_l}\|_p \le 2^{l+1} 4^{-(l+1)} = 2^{-(l+1)}.
$$

Therefore, the series $\sum \mu(A_l)$ converges, and in particular $\lim_{n\to\infty}\sum_{l\geq n}\mu(A_l)$ 0.

$$
\mu(\limsup A_l) = \mu(\bigcap_{n=1}^{\infty} \cup_{l \geq n} A_l) \leq \mu(\cup_{l \geq n} A_l) \leq \sum_{l \geq n} \mu(A_l) = 0.
$$

In other words, for all but finitely many l's, $|f_{n_{l+1}} - f_{n_l}| < 2^{-(l+1)}$, μ -a.e. In particular, $\sum_{l=1}^{\infty} |f_{n_{l+1}} - f_{n_l}|$ converges μ - a.e. or, the series whose partial sums appear in (6) converges absolutely, μ -a.e. As a result, $\lim_{k\to\infty} f_{n_k}$ converges μ -a.e. Denote its limit by f.

3. Candidate in \mathcal{L}^p **.** This is basically Fatou's lemma which states:

$$
\liminf \int |f_{n_k}|^p d\mu \ge \int \liminf |f_{n_k}|^p d\mu = \int |f|^p d\mu.
$$

As a result, $\liminf \|f_{n_k}\|_p \geq \|f\|_p$. The lefthand side is finite because our sequence is Cauchy hence bounded.

4. Convergence of subsequence in L^p . Fix some k. Then repeating the argiment from the previous step,

$$
\liminf_{l\to\infty}\int|f_{n_l}-f_{n_k}|^p d\mu\geq \int|f_{n_k}-f|^p d\mu.
$$

That is $\liminf_{l\to\infty} ||f_{n_k} - f_{n_l}||_p \ge ||f_{n_k} - f||_p$. Therefore,

$$
\sup_{m \in \mathbb{N}} \|f_{n_k} - f_{n_k + m}\|_p \ge \|f_{n_k} - f\|_p,
$$

As $k \to \infty$ the lefthand side tends to 0 as our original sequence is Cauchy, and therefore $\lim_{k\to\infty} ||f_{n_k} - f||_p = 0.$

5. Convergence of full sequence. We have finally arrived at our last step. Sit back and relax. It's all triangle inequality. For every $n \geq n_1$ there exists a unique k such that $n_k \leq n < n_{k+1}$. Now

$$
||f_n - f||_p \le ||f_n - f_{n_k}||_p + ||f_{n_k} - f||_p.
$$

As $n \to \infty$, $k \to \infty$. Therefore, the first summand on the righthand side tends to 0 because our sequence is Cauchy. The second also tends to 0 because of the previous step. Done. \Box

4 L^{∞}

In this section we complete the description of the L^p spaces by introducing the space L^{∞} . We begin with some motivation. A simple calculus exercise shows that if a_1, \ldots, a_d are real numbers then $\lim_{p\to\infty} (\sum_{n=1}^d |a_n|^p)^{1/p} =$ $\max_{n=1,\ldots,d} |a_n|$. If we equip the finite set $\{1,\ldots,d\}$ with the counting norm, then the lefthand side can be viewed as the limit of the L^p -norm of the function $n \to a_n$ as $p \to \infty$. The normed space $(L^{\infty}, \|\cdot\|_{\infty})$ will be a generalization of this maximum.

For $f \in \mathcal{L}$, let

$$
||f||_{\infty} = \inf \{ L : \mu(|f| > L) = 0 \}.
$$

Of course, $||f||_{\infty} \leq \sup |f|$. A good example to remember is one we have seen before. Consider a Lebesgue measure. Then $||\mathbf{1}_{\mathbb{Q}}||_{\infty} = 0 < 1 = \sup |\mathbf{1}_{\mathbb{Q}}|$. As before we define \mathcal{L}^{∞} as $\{f \in \mathcal{L} : ||f||_{\infty} < \infty\}.$

 \mathcal{L}^{∞} is a vector space with respect to addition and scalar multiplication of functions and $\|\cdot\|_{\infty}$ is a semi-norm. The proofs are much simpler than for $\|\cdot\|_p$, where we had to get through Holder's inequality to obtain the triangle inequality, Minkowski's inequality. Let's show the triangle inequality for $\|\cdot\|_{\infty}$. Let $f, g \in \mathcal{L}^{\infty}$, and let M_f and M_g be any real numbers strictly larger than $||f||_{\infty}$ and $||g||_{\infty}$, respectively. Then $\mu(|f| > M_f) = 0$ and $\mu(|g| > M_g) = 0$. If $|f + g| > M_f + M_g$, then $|f| + |g| > M_f + M_g$, which implies $|f| > M_f$ or $|g| > M_q$. Therefore the set $\{|f + g| > M_f + M_g\}$ is contained in the set of measure zero $\{f > M_f\} \cup \{g > M_g\}$. This implies

$$
||f+g||_{\infty} \le M_f + M_g.
$$

Taking the infimum over allowed values of M_f and M_g and using the definition of $\|\cdot\|_{\infty}$ then gives

$$
||f+g||_{\infty} \leq ||f||_{\infty} + ||g||_{\infty}.
$$

Functions in \mathcal{L}^{∞} are also called essentially bounded (with respect to the given measure): bounded, with the exception of a set of measure zero. Consider again the Lebesgue measure. Let $f(x) = \frac{1}{|x|}$ if x is nonzero rational and 0 otherwise. Then $||f||_{\infty} = 0$, although f is unbounded. It is essentially bounded. We note that for $f \in \mathcal{L}^{\infty}$, $|f| \leq ||f||_{\infty}$ μ -a.e.

Repeating the construction of L^p we obtain the normed space $(L^{\infty}, \|\cdot\|_{\infty})$ where each element in L^{∞} is of the form $\{f + h : f \in \mathcal{L}^{\infty}, h = 0, \mu \text{ a.e.}\},\$ a set we denote by $[f]$, as usual.

Next we want to prove that $(L^{\infty}, \|\cdot\|_{\infty})$ is complete. This is much easier than for L^p , as convergence in this space is uniform convergence, except on a set of measure zero. Indeed, let $([f_n] : n \in \mathbb{N})$ be a Cauchy sequence. Let $A_n =$ $\{|f| > ||f||_{\infty}\}\$ and let $A = \bigcup_{n=1}^{\infty} A_n$. Then $\mu(A) = 0$ and on A^c , $|f_n| \leq ||f_n||_{\infty}$. In particular for every $\omega \in A^c$ and every $m, n \in \mathbb{N}$ we have that

$$
|f_n - f_m|(\omega) \leq ||f_n - f_m||_{\infty}.
$$

Therefore, for $\omega \in A^c$, the numerical sequence $(f_n(\omega) : n \in \mathbb{N})$ is Cauchy (in \mathbb{R}) and therefore converges to some limit $f(\omega)$. Moreover for all $\omega \in A^c$,

$$
|f_n - f| = \lim_{m \to \infty} |f_n - f_{n+m}| \le \sup_{m \in \mathbb{N}} ||f_n - f_{n+m}||_{\infty},
$$

therefore the convergence is uniform on A^c , and since $\mu(A) = 0$, this implies $\lim_{n\to\infty} ||f_n - f||_{\infty} = 0.$

The last result we would like to prove is Holder's inequality. This is even simpler. Let $f \in \mathcal{L}^1$ and $g \in \mathcal{L}^{\infty}$. Then

$$
|\int fg d\mu| \leq \int |f| ||g||_{\infty} d\mu = ||f||_1 ||g||_{\infty}.
$$