
Greedy Coupling of 3-State Markov Chains

Iddo Ben-Ari, Mason DiCicco

Abstract

In probability theory, coupling is a valuable proof technique often used to produce
upper bounds on the total variation norm between distribution of two Markov Chains
with the same transition function but different initial distributions by creating one joint
process whose marginals are the respective processes. Without additional restrictions,
there is a large diversity of coupling methods one can use. The desirability of a par-
ticular method is determined by various attributes, such as whether the joint process
is itself a Markov chain, or how fast the marginal processes meet, or couple. In this
work we review the theory, present some known and new qualitative criteria which help
determine whether a given coupling provides sharp bounds. We then discuss the notion
of greedy couplings, those maximizing the probability of meeting in the next step, and
use the criteria presented to provide an exhaustive study of greedy couplings for the
simple yet not entirely trivial case of 3-state Markov chains.

1 Background

1.1 Markov Chains

Suppose that S is a finite or countable nonempty set. A (time-homogeneous) Markov Chain
(MC) with state space S is a sequence of random variables X = (X0, X1, . . . ) taking values
in S, such that the conditional distributions P(Xn+1 = ·|X0, X1, . . . , Xn), n ∈ Z+ is only
a function of Xn. More precisely, there exists a function p : S × S → [0, 1], the transition
function (TF), representing these conditional distributions in the following sense:

P(Xn+1 = j|X0, X1, . . . , Xn) = p(Xn, j). (1)

As the distribution of “the future” depends on the past only through the present state,
this is often known as the memoryless property or the Markov property. Any transition
function satisfies the following:

1. p(i, j) ≥ 0 (non-negativity)

2.
∑
j p(i, j) = 1 (stochasticity)

The number p(i, j) represents the transition probability from state i to state j.
By iterating (1), it follows that the distribution of the MC X is determined by its

transition function p, and the distribution of X0, known as the initial distribution of the
process.

Given any distribution on S and a function p satisfying 1. and 2. above, there always
exists a MC X whose initial distribution is the one prescribed and whose transition function
is p.
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As there is no loss of generality assuming that S takes the form {1, . . . , n}, or {1, 2, . . . },
for the remainder of this section we will make this assumption.

Transition functions can be identified with square matrices, with rows and columns
indexed by the states. More precisely, if p is a transition function on the state space
{1, . . . , n}, the corresponding transition matrix is the n× n matrix whose entry in the i-th
row and j-th column is p(i, j), the probability of a transition from state i to state j. The
matrix representation of p is particularly useful because, by direct calculation, it follows
from (1) that

P(Xn+m = j|X0, X1, . . . , Xn) = pm(Xn, j), n,m ∈ Z+.

where pm is the m-th power of transition matrix. To ease notation, in the sequel we will
write p0 for the identity matrix on the state space, that is p0(i, i) = 1 for all i and p0(i, j) = 0
when j 6= i.

If X is a MC with transition function p and initial distribution µ, we write Pµ for the
distribution of X. The Markov property then gives us that for any n ∈ Z+, i0, . . . , in ∈ S

Pµ(X0 = i0, . . . , Xn = in) = µ(i0)p(i0, i1) · · · p(in−1, in).

In particular, the distribution of Xn is given by the matrix product µpn =
∑
i µ(i)pn(i, ·),

where here and henceforth a probability measure on S will be considered as a row vec-
tor. When the initial distribution µ is a delta measure at state x, we write Px for the
corresponding distribution.

Example 1. A general 2-state Markov chain has the following transition matrix.

p =

(
a 1− a

1− b b

)
.

A transition function corresponds to a weighted directed graph whose vertex set is the
state space, and an edge from i to j exists iff p(i, j) > 0 with corresponding weight given
by p(i, j), leading to the following graphical representation of the chain from Example 1,
assuming a, b ∈ (0, 1) :

1 2

1− a

1− b
a b

A stationary distribution for the TF p is a probability distribution π satisfying∑
i

π(i)p(i, j) = π(j).

Thus, π can be though of as a row vector, a left-eigenvector for the transition matrix p with
eigenvalue 1, all of whose entries are nonnegative and normalized to have sum 1. From its
definition, we see that πpn = π for all n ∈ Z+. In terms of the corresponding MC, this
means

Pπ(Xn = ·) = π, n ∈ Z+.

A TF (or the corresponding MC) is called irreducible if there is a path between every
two states. More precisely, p is irreducible if for any pair of distinct states i, j, there exists
m ∈ Z+ such that pm(i, j) > 0. A transition function is called aperiodic if for any state i,
the greatest common divisor of the set of integers Ii = {m ∈ N : pm(i, i)} is 1.
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1.2 The Fundamental Theorem for Markov Chains

Let S be a finite or countable set. The total variation norm between probability measures
µ1, µ2 (or more generally two functions) on S is defined as half the `1-norm of µ1 − µ2:

‖µ1 − µ2‖TV =
1

2

∑
s∈S
|µ1(s)− µ2(s)|

=
∑

s∈S,µ1(s)>µ2(s)

µ1(s)− µ2(s)

= max
A⊂S

(µ1(A)− µ2(A))

(2)

We also define
dt(µ1, µ2) = ‖Pµ1(Xt ∈ ·)− Pµ2(Xt ∈ ·)‖TV . (3)

The triangle inequality for the `1-norm then gives

dt(µ1, µ2) ≤ sup
µ1(x)>0,µ2(y)>0

dt(x, y).

Another expressions that follows immediately from (2) is

dt(µ1, µ2) = 1−
∑
s∈S

min(Pµ1
(Xt = s),Pµ2

(Xt = s)). (4)

The following result is often known as the Fundamental Theorem of Markov Chains.

Theorem 1. [LPW06, Theorem 4.9] Suppose that p is an irreducible transition function
on the finite state space S. Then

1. p has a unique stationary distribution π.

2. If, in addition, p is aperiodic, then there exists a constant c > 0 and ρ < 1 such that

dt(x, π) ≤ max
x

dt(x, y) ≤ cρn (5)

for all t ∈ Z+.

Theorem 2. Suppose that p is a transition function on the finite state space S. Then

1. [HJ12, Theorem 8.3.4] All eigenvalues of p are in the closed unit disk, and 1 is an
eigenvalue.

2. [HJ12, Theorem 8.4.4] If, in addition, p is irreducible and aperiodic, then

(a) 1 is a simple eigenvalue.

(b) All other eigenvalues are in the open unit disk.

Let λ2 denote the maximum among the norms of all eigenvalues of p different than 1 in
Theorem 2. Then the Jordan decomposition for p gives

Proposition 1. Suppose that p is an irreducible transition function on the finite state space
S. Then

1. If ρ satisfies (5), then ρ ≥ λ2.

2. Choosing ρ = λ2 satisfies (5).

Therefore the algebraic quantity λ2 is the geometric rate of convergence in the funda-
mental theorem. In this work we study a purely probabilistic approach for estimating it,
known as coupling.
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2 Couplings

2.1 Couplings

Throughout this section we will fix a transition function p on a finite or countable state
space S.

Definition 1 (Coupling). A coupling for p is an S × S-valued process (X,Y ) such that X
and Y are each MC with transition function p. That is, for every n and j ∈ S{

P(Xn+1 = j|Xn, Xn−1, . . . , X0) = p(Xn, j)

P(Yn+1 = j|Yn, Yn−1, . . . , Y0) = p(Yn, j)

The simplest example of a coupling is when we take X = Y . The second simplest may
be Yn = Xn+m for some m ∈ Z+, and another “generic” example is when Y is independent
of X. Note that in the definition of a coupling we do not require the process (X,Y ) to be
a Markov chain itself.

Definition 2 (Coupling Time). Given a coupling (X,Y ) for p define

1. The coupling time τ as
τ = inf{t ∈ Z+ : Xt = Yt}, (6)

with the infinimum over the empty set defined as +∞.

2. The coupling is called sticky if for all t ∈ Z+

Xt = Yt on {τ ≥ t}.

That is, a coupling is sticky if the two copies coalesce at the coupling time. We will
return to these notions later and we will continue listing a number of important classes of
couplings.

Definition 3 (Markovian Coupling). A coupling for p is Markovian if each of the marginal
processes is a Markov chain with respect to the joint history. That is, for every n and j ∈ S{

P(Xn+1 = j|(Xn, Yn), (Xn−1, Yn−1), . . . , (X0, Y0)) = p(Xn, j)

P(Yn+1 = j|(Xn, Yn), (Xn−1, Yn−1), . . . , (X0, Y0)) = p(Yn, j)
(7)

A Markovian coupling may not be itself a Markov chain, yet it it often that authors
make this additional assumption. Conversely, a coupling which is a Markov chain may not
be Markovian.

Proposition 2. A coupling (X,Y ) for p is Markovian if and only if for every s ∈ Z+, the
distribution of the process t → (Xs+t, Ys+t), conditioned on ((X0, Y0), . . . , (Xs, Ys)) is a.s.
a coupling for p with initial distribution (Xs, Ys)

Proof. Assume that the coupling is Markovian. Then the distribution of each of the Marginals,
t → Xs+t and t → Ys+t, conditioned on ((X0, Y0), . . . , (Xs, Ys)) is a MC with transition
function p and initial distribution p, and therefore the conditional process is a coupling.

Conversely, if the conditional process is a coupling, then (7) trivially holds.
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Definition 4. (Faithful coupling [Ros97, DDB17]) A coupling for p is faithful if it is both
a Markov chain and Markovian. That is,

a)

P((Xn+1, Yn+1) = (x, y)|(Xn, Yn), (Xn−1, Yn), . . . , (X0, Y0)) = p((Xn, Yn), (x, y)) (8)

from some transition function p on S × S.

b) Equation (7) holds. Under condition a), this is equivalent to{∑
y∈S p((x′, y′), (x, y)) = p(x′, x), x, x′, y′ ∈ S∑
x∈S p((x′, y′), (x, y)) = p(y, y′), y, x′, y′ ∈ S.

(9)

We observe that every coupling where the two copies are independent is automatically
faithful. Here are examples for couplings where one of the conditions in the definition fails.

Example 2. Suppose X is already given. We define Yn = Xn+1. Then (X,Y ) is a coupling
for p. Observe that

P((Xn+1, Yn+1) = (x, y)|(Xn, Yn), . . . , (X0, Y0)) = p((Xn, Yn), (x, y)),

where p is the transition function on S × S

p((x′, y′), (x, y)) = δx,y′p(y
′, y).

Therefore this coupling is a Markov chain, that is (8) holds. Summing over y, we have

P(Xn+1 = x|(Xn, Yn), . . . , (X0, Y0)) =
∑
yn+1

δxn+1,Ynp(Yn, y) = δx,Yn .

Thus, except for trivialities, the coupling is not faithful because (9) fails.

Example 3. Let X0 = 0 and Y0 = 1. Let (Un : n ∈ Z+) be IID Bin( 1
2 ). We continue

according to the following algorithm. For n ∈ Z+, let p̂n denote 1
2(n+1)

∑
j≤n(Xj + Yj).

Given p̂n, let Bn be Bin(p̂n), and define

Xn+1 = U2(n+1)Bn + (1− U2(n+1))(1−Bn) and

Yn+1 = U2(n+1)Bn + U2n+3(1−Bn)

Observe that since p̂n is a function of (X0, Y0), . . . , (Xn, Yn), it follows that

P(Xn+1 = 1|(Xn, Yn), . . . , (X0, Y0)) = p̂n
1

2
+ (1− p̂n)

1

2
=

1

2
,

and that the same holds for Y . Therefore, (9) holds. Note, however, that (X,Y ) is not a
Markov chain. Indeed,

P(Xn+1 = Yn+1 = 1|(Xn, Yn), . . . , (X0, Y0)) = p̂n
1

2
+ (1− p̂n)

1

4
=

1 + p̂n
4

,

and p̂n is not a function of (Xn, Yn) because the latter assumes at most 4 distinct values,
while for n large enough p̂n can take an arbitrarily large number of values.
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Here is a restatement of (9):

Proposition 3. Suppose (X,Y ) is a coupling for p which is also a Markov chain. Then
the coupling is faithful if and only if for every n,

• Xn+1 and Yn are independent, conditioned on Xn; and

• Yn+1 and Xn are independent, conditioned on Yn.

Proof. We need to show that the two identities in (9) are equivalent to the the two indepen-
dence statements. We will only prove this for the first pair, as the other is identical with
the appropriate changes. The first equality in (9) can be rewritten as

p(x′, x) =
∑
y

p((x′, y′), (x, y)) = P(Xn+1 = x|Xn = x′, Yn = y′).

This is equivalent to

P(Xn+1 = x, Yn = y′|Xn = x′) =
p(x′, x)P(Xn = x′, Yn = y′)

Px0
(Xn = x′)

= P(Xn+1 = x|Xn = x′)P(Yn = y′|Xn = x′),

proving the equivalence.

Definition 5 (Component Exchangeability). A coupling which is a Markov chain with
transition function p is component exchangeable if for all x, y, x′, y′ ∈ S

p((x′, y′), (x, y)) = p((y′, x′), (y, x)).

In other words, the dynamics are invariant under swapping the components. Example
2 shows a coupling which is a Markov chain yet not component exchangeable, with the
exception of trivialities.

Proposition 4. Let p be the transition function of a faithful coupling for p. Let

q((x′, y′), (x, y)) =

{
p((x′, y′), (x, y)) x′ 6= y′

δx,yp(x
′, x) x′ = y′.

(10)

Then q is the transition function of a sticky faithful coupling for p. If p is component
exchangeable, then so is q.

This is an extremely important property of faithful couplings, and when working with
couplings which are not faithful or are not sticky, some interesting things may happen, see
for example [HM18].

As the proof follows directly from the definition of the faithful condition, we will omit
it. We also note that often the procedure is performed path-wise. Suppose that (X,Y ) is a
coupling corresponding to p, then letting

Y ′t =

{
Yt t ≤ τ
Xt t > τ

we obtain that (X ′, Y ′) is a coupling corresponding to q.
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2.2 Greedy couplings

Definition 6. A coupling (X,Y ) for p is called greedy if at any step the probability of
coupling is maximized. That is, for every t ∈ Z+ and s ∈ S

P(Xt+1 = Yt+1|(Xt, Yt), . . . , (X0, Y0)) =
∑
s∈S

min{p(Xt, s), p(Yt, s)}.

Observe that greedy couplings are always sticky, but not necessarily faithful nor are
uniquely determined by the condition.

Theorem 3. Let p be a transition function on the state space S. Then there exists a faithful,
component exchangeable coupling (X,Y ) for p such that

1. The coupling is greedy.

2. Conditional on {τ > n}, the component processes (X0, . . . , Xn), (Y0, . . . , Yn) are inde-
pendent.

Furthermore, conditions 1,2 uniquely determine the transition function for the coupling.

Proof. Let (x0, y0) ∈ S × S we will construct a coupling satisfying all the requirements
with (X0, Y0) = (x0, y0). For each x, y, j ∈ S, let px,y,j = min{p(x, j), p(y, j)}, and let
px,y =

∑
j p(x, y, j). Set (X0, Y0) = (x0, y0). Continue inductively. Suppose (Xj , Yj), j ≤ n

have been defined. Let Un+1 ∼ U[0, 1] be independent of them. Conditioning on (Xn, Yn) =
(x, y), (Xn−1, Yn−1), . . . , (X0, Y0) and Un+1:

• let Xn+1 = Yn+1 = j if Un+1 ∈ [0, p(x, y, j)) +
∑
k<j p(x, y, k),

• let Xn+1 and Yn+1 move independently otherwise, that is if Un+1 > px,y, with condi-
tional probabilities as follows.

P(Xn+1 = i, Yn+1 = j|(Xn, Yn) = (x, y), (Xn−1, Yn−1), . . . , (X0, Y0), Un+1 > p(x, y))

=
p(x, i)− p(x, y, i)

1− p(x, y)
× p(x, j)− p(x, y, j)

1− p(x, y)
.

(11)

Then the construction guarantees that (X,Y ) is a Markov chain, and furthermore, as

P(Xn+1 = i|Xn = x, Yn = y) = p(x, y, i) +
p(x, i)− p(x, y, i)

1− p(x, y)
(1− p(x, y)) = p(x, i),

with a similar expression for Yn+1, the coupling is faithful.
Independence and component exchangeability are built into our construction. The

uniqueness follows from induction whose details we omit.

Here is why we are interested in greedy couplings.

Theorem 4. Suppose that (X,Y ) is a faithful coupling for p with coupling time τ . Then
there exists a greedy faithful coupling for p with the same initial distributions as (X,Y ) and
coupling time σ which is stochastically dominated by τ . That is,

P(σ > t) ≤ P(τ > t).

Furthermore, if (X,Y ) is component exchangeable then so is the greedy coupling.
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Proof. Without loss of generality, we assume that

• The probability space can support an IID sequence (Ut : t ∈ N) of U[0, 1], independent
of (X,Y ). We will construct a greedy coupling (X ′, Y ′) based on (X,Y ) and which
will have a coupling time less than or equal to the coupling time of (X,Y ), τ .

• (X0, Y0) = (x0, y0) with x0 6= y0.

We now construct a greedy coupling (X ′, Y ′) for p satisfying the requirements. Let (X ′0, Y
′
0) =

(x0, y0) and continue by induction as follows, with the induction assumption being:

1. ((Xs, Ys) : s ≤ t) is a greedy faithful coupling for p with (X0, Y0) = (x0, y0).

2. On the event {τ > t} either X ′t = Y ′t or (X ′s, Y
′
s ) = (Xs, Ys) for all s ≤ t.

3. On {τ ≤ t}, X ′t = Y ′t .

The induction hypothesis trivially holds for t = 0. Continue according to the following
alternatives:

1. On {X ′t = Y ′t } continue the coupling according to the sticky condition.

2. The remaining event is {τ > t} ∩ {(X ′t, Y ′t ) = (Xt, Yt)}. Here let Ut+1 ∼ U [0, 1], and
for i = 1, 2, . . . , let

pi = p(Xt, i) ∧ p(Yt, i)− p((Xt, Yt), (i, i)),

independently of the past. Let

I1 = [0, p1], I2 = (p1, p1 + p2], . . . , Ik = (p1 + · · ·+ pn−1, p1 + · · ·+ pn], . . .

If Xt+1 = Yt+1, set (X ′t+1, Y
′
t+1) = (Xt+1 = Yt+1). Otherwise, if

(a) if Ut+1 ∈ Ii for some i, then set X ′t+1 = Y ′t+1 = i;

(b) and if Ut+1 6∈ ∪∞i=1Ii, then set (X ′t+1, Y
′
t+1) = (Xt+1, Yt+1).

Note that in either alternative, the conditional probability that X ′t+1 = i conditioned on the
entire past of the process is p(X ′t, i), with the analogous statement for Y ′t+1. Furthermore,
the coupling is greedy by construction, so that the first statement in the induction hypothesis
holds for t+ 1. The last two also follow directly from the construction. This completes the
induction.

As our algorithm is invariant under swapping the components, if (X,Y ) is component
exchangeable, then so is (X ′, Y ′).

2.3 Maximality and Efficiency

Recall the definition of dt(µ1, µ2) from (3). Then for any coupling (X,Y ) with initial
distributions (µ1, µ2)

dt(µ1, µ2) = max
A⊆S

E[1A(Xt)− 1A(Yt)]

= sup
f :S→[0,1]

E[f(Xt)− f(Yt)]

=
1

2
sup

f :S→[−1,1]
E[f(Xt)− f(Yt)] (12)
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Proposition 5. Let (X,Y ) be a coupling of two S-valued Markov chains with initial distri-
butions (µ1, µ2). Then

1. (Aldous’ inequality) For every t ∈ Z+,

dt(µ1, µ2) ≤ P(Xt 6= Yt) (13)

2. An equality in Aldous’ inequality holds if and only if

P(Yt ∈ AXt , Xt 6= Yt) = 0,

where
AXt = {j : P(Xt = j) ≥ P(Yt = j)}. (14)

The analogous statement holds when replacing the roles of X and Y .

We comment that Proposition 5 does not make any assumption on the coupling.

Proof. From the definition,

dt(µ1, µ2) = E
[
1AX

t
(Xt)− 1AX

t
(Yt)

]
.

In addition,

1AX
t

(Xt)− 1AX
t

(Yt) = (1AX
t

(Xt)− 1AX
t

(Yt))1{Xt 6=Yt} ≤ 1{Xt 6=Yt}.

This proves the first claim. As for the second claim. To prove the second claim, observe
that the inequality is strict if and only if Xt 6= Yt and one of the following holds:

• Xt ∈ AXt and Yt ∈ AXt .

• Xt 6∈ AXt and Yt ∈ AXt .

Therefore the inequality is strict on the event {Xt 6= Yt} ∩ {Yt ∈ AXt }, and in particular,
the difference between the expectation of the two sides is strictly positive if and only if that
event has positive probability.

Definition 7 (Efficiency). Let (X,Y ) be a coupling for p with initial distributions (µ1, µ2).

• The coupling is called maximal at time t if dt(µ1, µ2) = P(Xt 6= Yt).

• The coupling is called efficient if there exists a constant c > 0 satisfying

P(Xt 6= Yt) ≤ cdt(µ1, µ2) for all t ∈ Z+ (15)

Maximal couplings always exist [Gri75, Lin92], but may be pretty complex and not
tractable. The notion of efficient coupling was introduced in [BK00, Definition 2.2] for
continuous-time chains.

Next, let {
BXt = (AYt )c = {j : P(Xt = j) > P(Yt = j)}
BYt = (AXt )c = {j : P(Yt = j) > P(Xt = j)}
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From the Proposition, we have an equality in Aldous inequality if and only if

P
((
{Yt ∈ AXt } ∪ {Xt ∈ AYt }

)
∩ {Xt 6= Yt}

)
= 0.

Or,
P
((
{Yt ∈ BYt } ∩ {Xt ∈ BXt }

)
∪ {Xt = Yt}

)
= 1.

Since {Yt ∈ BYt } ∩ {Xt ∈ BXt } ⊆ {Yt 6= Xt}, this equality leads to

{Yt ∈ BYt } ∩ {Xt ∈ BXt } = {Xt 6= Yt} P-a.s. (16)

Now this implies that the distributions of Xt and of Yt conditioned on Xt 6= Yt are supported
on disjoint sets. Conversely, if the distributions of Xt and Yt are supported on disjoint sets,
we have equality in Aldous inequality. This leads to the following:

Corollary 1. Let (X,Y ) be as in proposition 5. Then the following are equivalent:

1. The coupling is maximal at time t.

2.
{(Xt, Yt) ∈ BXt ×BYt } = {Xt 6= Yt}, P-a.s.

3. The distributions of Xt and Yt, both conditioned on {Xt 6= Yt} are supported on
disjoint sets.

4.
‖P(Xt ∈ ·|Xt 6= Yt)− P(Yt ∈ ·|Xt 6= Yt)‖TV = 1.

The definition of efficiency of a coupling immediately leads to

Corollary 2. The coupling is efficient if and only if

lim inf
t→∞

‖P(Xt ∈ ·|Xt 6= Yt)− P(Yt ∈ ·|Xt 6= Yt)‖TV > 0.

Finally, suppose that (X,Y ) is a sticky maximal coupling. In this case {Xt 6= Yt} =
{τ > t}. Let

τR = inf{t ∈ Z+ : (Xt, Yt) 6∈ BXt ×BYt }. (17)

Then (16) gives

{τ > t} =

t⋂
s=0

{τ > s} =

t⋂
s=0

{(Xs, Ys) ∈ BXs ×BYs } = {τR > t},

leading to the following corollary:

Corollary 3. Let (X,Y ) be a sticky coupling for p. Then the coupling is maximal for all
t ∈ Z+, if and only if

τ = τR, P-a.s.,

where τR was defined in (17).

10



2.4 Tests for Maximality and Efficiency

In this section we focus on tests for maximality and efficiency of a coupling based on coarse
properties of the coupling. These tests are not new, and some have appeared in slightly
different contexts before. The first result we present follows immediately from Theorem 4.

Corollary 4. If (X,Y ) is a faithful coupling for p which is maximal, then it is greedy.

Corollary 5. If for some i 6= j and for some t ∈ Z+,

P(Xt = i, Yt = j)P(Xt = j, Yt = i) > 0,

then the coupling is not maximal at time t.

Indeed, the stated condition violates condition 3 of Corollary 1. The converse of Corollary
5 is not true. The following example provides two couplings for a Markov chain with both
being faithful and sticky, with the first being maximal and the other being efficient but not
maximal, yet not satisfying the condition.

Example 4. Let S = {−1, 0, 1}, with

p =


1
2

1
2 0

1
2 0 1

2

0 1
2

1
2

 ,

and where the rows and columns are listed in increasing order of the states. Let X0 = −1
and Y0 = 1. Here are two couplings, both satisfying Xt < Yt for all t < τ , and therefore
P(Xt = i, Yt = j)P(Xt = j, Yt = i) = 0 for all i < j.

1. A standard mirror coupling. Define Xt for all t, and set Yt = −Xt until X transitions
to 0, and Yt = Xt afterwords. The coupling time P(τ = t) ∼ Geom(1/2), so its
expectation is 2. Furthermore, this coupling is maximal because

{Xt = −1, Yt = 1} = {Xt 6= Yt} P-a.s.

2. Copies are independent until they coupled or one unit apart. In the latter case, one
copy is at 0 and another is at ±1, which we denote by (0,±1). We transition to
(±1,±1) with probability 1/2 and to (∓1, 0) with probability 1. That is couple with
probability 1/2, or “shift” the system, with probability 1/2. The coupling time is the
sum of Geom(3/4), time until coupled or one apart, plus, with probability 2/3, another
Geom(1/2). Therefore the expected coupling time is 8/3. In light of the above, this
cannot be maximal. Yet, this coupling is efficient, because the geometric tail for the
coupling time is the same as for the maximal coupling constructed above.

A weak version of Corollary 1 for maximality of a coupling leads to the following sufficient
condition for efficiency, which is a straightforward generalization of [BK00, Thereom 2.6-(ii)].

Proposition 6. Suppose p is a transition function on the finite state space S. If (X,Y ) is a
sticky coupling for p with the property that for each t there exists some function ft : S → R
such that {ft(Yt) > ft(Xt)} = {τ > t}, a.s. then the coupling is efficient.
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Proof. Since S is finite, we may assume that for all t, the range of ft is contained in [0, 1],
and that there exists some ε > 0, such that on the event {τ > t}, ft(Yt)− ft(Xt) > ε for all
t, a.s. Let (µ1, µ2) denote the initial distributions of (X,Y ), respectively. Then

P(τ > t) ≤ 1

ε
E[ft(Yt)− ft(Xt), τ > t]

(12)

≤ 1

ε
dt(µ1, µ2).

Here is a condition that guarantees when a coupling is not efficient. This is a version of
[BK00, Theorem 2.6-(i)] which was proven for continuous-time chains, where aperiodicity is
not an issue. Here we bring a different proof based on an h-transform and the fundamental
theorem for Markov chains.

Theorem 5. Let p be a transition function on the finite state space S, and let p be the
transition function of a component exchangeable coupling for p which is a Markov chain.
Suppose that the restriction of p to (S×S)−D where D = {(s, s) : s ∈ S}, is aperiodic and
irreducible. Then any coupling (X,Y ) with transition function p and (X0, Y0) = (x0, y0) ∈
(S × S)−D is not efficient.

Proof. Let p0 be the restriction of p to (S × S)−D. Then by assumption p0 is irreducible
and aperiodic and therefore has a Perron root λ ∈ (0, 1) and a corresponding eigenvector φ.
Define

q(i, j) =
1

φ(i)λ
p0(i, j)φ(j),

where here we use i, j for generic elements in (S × S)−D. Then q is a bonafide irredicuble
and aperiodic transition function on (S × S)−D.

Now let (X,Y ) be a coupling with transition function p, with (X0, Y0) = (x0, y0), where
x0 6= y0. Then for j ∈ (S × S)−D

P((Xt, Yt) = j, τ > t) = pt0((x0, y0), j) = λtφ((x0, y0))qt((x0, y0), j)
1

φ(j)
. (18)

Let φ̃((y, x)) = φ((x, y)). Then using the fact that φ is a Perron eigenvector and the
component exchageability, we have

λφ̃((y0, x0)) = λφ((x0, y0))

=
∑
(x,y)

p0((x0, y0), (x, y))φ((x, y))

=
∑
(y,x)

p0((y0, x0), (y, x))φ((x, y))

= p0φ̃((y0, x0)).

Therefore φ̃ is also a Perron eigenvector. By uniqueness up to a constant factor, it therefore
follows that φ̃((a, b)) = φ((a, b)). But φ̃((a, b)) = φ((b, a)), and we have have shown that
φ((a, b)) = φ((b, a)). That is, q is also component exchangeable. Let πq be the stationary
distribution for q. A similar argument shows that it is also symmetric, that is πq((x, y)) =
πq((y, x)). Now, from (18),

E[f((Xt, Yt)), τ > t] = λtφ((x0, y0))Eq[
f((Xt, Yt))

φ((Xt, Yt))
], (19)

12



where Eq is the distribution of (X,Y ) under the transition function q. By the fundamental
theorem for Markov chains,

lim
t→∞

sup
f,|f |≤1

|Eq[
f((Xt, Yt))

φ((Xt, Yt))
]− πq(f/φ)| → 0.

Now let f((x, y)) = 1A(x). By the above claimed component exchangeability, it follows
that

lim
t→∞

sup
A
|Eq[

1A(Xt)− 1A(Yt)

φ(Xt, Yt)
]| = 0. (20)

Putting (20) into (19), we obtain

dt(µ1, µ2) = sup
A
|P(Xt ∈ A, τ > t)− P(Yt ∈ A, τ > t)| = λto(1).

On the other hand, letting f = 1 in (19), we have

P(τ > t) ∼ λtφ(x0, y0)πq(1/φ),

and therefore dt(x0, y0) = P(τ > t)o(1), completing the proof.

The proof can be repeated verbatim to give the following result.

Corollary 6. Let p be a transition function on the finite state space S, and let p be the
transition function of a component exchangeable coupling for p which is a Markov chain,
and let p0 be the restriction of p to (S × S) − D. suppose that A ⊆ (S × S) − D is
irreducible and aperiodic for p0. Then any coupling (X,Y ) with transition function p and
(X0, Y0) = (x0, y0) ∈ A is not efficient.

3 Efficiency for 3-state chains

3.1 Various Conditions for the Existence of Efficient Couplings

In this section we focus on the relatively simple case of 3-state chains. As a warmup, we
begin with two-state chains, where a greedy coupling is always unique and maximal.

Example 5. Let p be a transition function on S = {0, 1}, and let (X,Y ) be a greedy
coupling with (X0, Y0) = (i, 1−i). We show that the greedy coupling is unique and maximal.
This is obvious if the two rows of p are identical. Assume they are not. Let j be such that
p(j, 0) > p(1− j, 0), then necessarily p(1− j, 1) > p(j, 1), and therefore conditioning on not
coupling by time t+ 1, then the copy that was in j at time t will be in 0 at time t+ 1 and
the other copy will be in 1 at time t+1. From Corollary 1, this guarantees that the coupling
is maximal. As this event will occur with conditional probability

p(j, 0)− p(1− j, 0) = p(1− j, 1)− p(j, 1) = 1− p(j, 0) ∧ p(1− j, 0)− p(j, 1) ∧ p(1− j, 1),

we also have
dt(0, 1) = |p(1, 0)− p(0, 0)|t = |1− p1,1 − p0,0|t.

Next, we show that in some cases, no efficient Markovian coupling exists. The following
is version of a result that appeared in [Swe18].
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Theorem 6. Suppose that p is a symmetric transition function on the state space S =
{1, 2, 3} with p1,3 = p2,2 = p3,1. Then

1. p has an efficient Markovian coupling if and only if at least two entries in the first row
of p are identical, and in this case the greedy coupling is efficient.

2. Any greedy Markovian coupling for p2 is maximal.

We comment that the maximal coupling for p2 from part 2 of the theorem can be lifted
to obtain a maximal coupling for p which is a Markov chain but not Markovian. We also
comment that nonexistence results of this type have appeared for continuous-time processes
in [BK00] and [CM00].

Proof. Assume p is of the following form:

p =

α β γ
β γ α
γ α β


Thus, the trace of p is 1, and since 1 is an eigenvalue for p, it follows that the two remaining
eigenvalues are λ and −λ, and the determinant of p is equal to −λ2. Therefore the trace of
p2 is equal to 1 + 2λ2.

By the symmetry of p and since the second and the third rows are the first row shifted,
it follows that the three diagonal elements of p2 are all equal to α2 + β2 + (1−α− β)2, and
so we have two representations for the trace of p2:

1 + 2λ2 = 3(α2 + β2 + (1− α− β)2). (21)

Suppose (X,Y ) is a Markovian coupling for p with (X0, Y0) = (x, y). Let τ be the coupling
time. Then

P(τ > t+ 1) =
∑
x′,y′

P(τ > t,Xt = x′, Yt = y′, Xt+1 6= Yt+1)

=
∑
x′,y′

P(Xt+1 6= Yt+1|τ > t,Xt = x′, Yt = y′)P(τ > t,Xt = x′, Yt = y′), (22)

where the summation is over (x′, y′) such that P(τ > t,Xt = x′, Yt = y′) > 0. Clearly,

P(Xt+1 6= Yt+1|τ > t,Xt = x′, Yt = y′) = 1−
∑
`

Px,y(Xt+1 = Yt+1 = `|τ > t,Xt = x′, Yt = y′).

The event {Xt+1 = Yt+1 = `} is the intersection of the events {Xt+1 = `} and {Yt+1 =
`}. By the Markovian property of the coupling, the probabilities of the latter two events
conditioned on {τ > t,Xt = x′, Yt = y′}, are p(x′, `) and p(y′, `), respectively. Note that we
do not assume (X,Y ) to be a Markov chain: we only assume each component is a Markov
chain with respect to the joint filtration. Therefore

P(Xt+1 = Yt+1 = `|τ > t,Xt = x′, Yt = y′) ≤ min(p(x′, `), p(y′, `)),

with equality if we choose a greedy coupling. From this we obtain

Px,y(Xt+1 6= Yt+1|τ > t,Xt = x′, Yt = y′) ≥ 1−
∑
`

min{p(x′, `), p(y′, `)}.
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Now let a be the minimal element in the first row of p, and let b be the maximal element in
the first row and c be the remaining element (note that any two may be equal).

In our case, for every choice of distinct x′, y′, a will appear twice in the sum on the
righthand side and c = 1 − a − b will appear once. Thus, the righthand side is equal to
2a+ (1− a− b) = a− b+ 1: P(τ > t+ 1|τ > t,Xt = x′, Yt = y′) = b− a. Plugging this into
(22), summing over x′, y′, and induction give

P(τ > t+ 1) ≥ (b− a)t+1, for all t ∈ Z+, (23)

with equality if the coupling is greedy. Since by Aldous’ inequality λ ≤ b− a with equality
if and only if the coupling is efficient, it follows from (21) that letting

f(a, b) = 1 + 2(b− a)2 − 3(a2 + b2 + (1− a− b)2),

then
f(a, b) ≥ 0,

with equality if and only if the coupling is efficient. Now

0 ≤ 1 + (2a2 + 2b2 − 4ab)− 3a2 − 3b2 − 3c2

= (1− (a+ b)2)− 2ab− 3c2

= (1− a− b)(1 + a+ b)− 2ab− 3c2

= c(2− c)− 2ab− 3c2

= c(2− 4c)− 2ab

= 2c(1− 2c)− 2ab

= 2c(a+ b− c)− 2ab

= −2(c2 − c(a+ b) + ab)

= −2(c− a)(c− b)
= 2(c− a)(b− c)

Therefore f is equal to zero if and only if c = a or c = b. Summarizing: a greedy Markovian
coupling is efficient if and only if at least two of the entries α, β, γ are equal. This completes
the proof of the first statement.

We turn to the second statement. Let r1, r2, r3 be the rows of p. Then by symmetry
and since all rows of p2 are cyclic permutations of r1, it follows that

p2(i, j) =

{
α′ = r1 · r2 = ab+ bc+ ca i 6= j

β′ = r1 · r1 = a2 + b2 + c2 i = j

Furthermore, from Cauchy-Schwarz, α′ ≤ β′. Consider any greedy Markovian coupling for
p2 with initial states (x, y), x 6= y. Then from the structure of p2 and the greedy condition,
on {τ > t}, Xt = x and Yt = y. It follows from Corollary 1 that the coupling is maximal.

Example 6. Let

p =

 1
2

1
3

1
6

1
3

1
6

1
2

1
6

1
2

1
3
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Then p satisfies the conditions of Theorem 6. Consider any Markovian coupling (X,Y )
with (X0, Y0) = (x0, y0), x0 6= y0. Then if Xt 6= Yt, the probability of coupling in time t+ 1
is bounded above by a+ a+ c = 1

6 + 1
6 + 1

3 = 2
3 . Therefore P(τ > t) ≥ ( 1

3 )t, with equality if
and only if the coupling is greedy. As the determinant of p is equal to − 1

12 , the eigenvalues
of p are 1,± 1

2
√
3
, and since 1

2
√
3
< 1

3 , we have shown that

1. There does not exist an efficient Markovian coupling for p.

2. The coupling time of any Markovian coupling dominates a Geom(2/3) random vari-
able, with equality if and only if the coupling is greedy.

3.2 Greedy and Faithful Couplings for 3-state Chains

We begin with a definition:

Definition 8. For distinct states 1 ≤ i, j ≤ 3 define the set

Mij := {k : pik > pjk} ⊆ {1, 2, 3},

and declare state i as being dominated by state j, written as il j, if |Mij | = 1.

Note that |Mij | + |Mji| ∈ {0, 2, 3}, where the sum is 0 if and only if pik = pjk for all
k, equal to 2 if and only if there exists exactly one k such that pik = pjk, and is 3 when
pik 6= pjk for all k. In particular, given any two rows i, j, then either they are equal, i l j
or j l i.

Proposition 7. Let p be a transition function on the state space S = {1, 2, 3}. Then all
greedy and faithful couplings for p share the same transition function given by the following
formula. Let (x0, x1) be a state.

p((x0, x1), (i0, i1)) =


p(x0, i) ∧ p(x1, i) i0 = i1

(p(x1−n, i1−n)− p(xn, i1−n))+ xn l x1−n and in 6= in−1

0 otherwise

(24)

Furthermore, p is component exchangeable and sticky.

We comment that if both x0 l x1 and x1 l x0, then the rows have exactly one k such
that p(x0, k) = p(x1, k). In this case

(p(x1, i0)− p(x0, i0))+ = (p(x0, i1)− p(x0, i1))+,

and therefore the formula is well-defined.
In words, the formula means the following:

1. If, x0 l x1 or x1 l x0, say x0 l x1, with p(x0, a) > (x1, a), then in the next step

(a) the two copies will be coupled in the next step with probability
∑3
i=1 p(x0, i) ∧

p(x1, i); or

(b) with the remaining probability, p(x0, a)− p(x1, a), the first component will move
to a and the second component will move to one of the remaining states b, c with
the leftover probabilities p(x1, b)− p(x0, b) and p(x1, c)− p(x0, c), respectively.
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2. Otherwise (which can only happen if the rows x0 and x1 are identical), the two copies
are necessarily coupled in the next step.

See Figure 1 for an illustration.

Proof. Let p be the transition function of such a coupling.
Let’s look at the x-th and the y-th row of p. Then

• A state a such that p(x, a) ≥ p(y, a) and p(x, j) ≤ p(y, j) for j 6= a; or

• A state b such that p(y, b) ≥ p(x, b) and p(y, j) ≤ p(x, j) for j 6= b.

It is possible that both hold. Let’s continue assuming the former, and find all possible
transitions from (x, y). The other case is treated mutatis mutandis. Let b, c be the two
states different from a. Then

p((x, y), (b, a)) = 0, p((x, y), (b, b)) = p(x, b), p((x, y), (b, c)) = 0. (25)

Similarly,

p((x, y), (c, a)) = 0, p((x, y), (c, b)) = 0, p((x, y), (c, c)) = p(x, c). (26)

Now

p(y, c) = p((x, y), (a, c)) + p((x, y), (b, c)) + p((x, y), (c, c)) = p((x, y), (a, c)) + p(x, c),

and so
p((x, y), (a, c)) = p(y, c)− p(x, c).

Repeating for b instead of c, we have

p((x, y), (a, b)) = p(y, b)− p(x, b).

That is

p((x, y), (a, a)) = p(y, a),

p((x, y), (a, b)) = p(y, b)− p(x, b),
p((x, y), (a, c)) = p(y, c)− p(x, c).

(27)

Bottom line, if the first alternative holds, then

p((x, y), (i, j)) =

{
p(x, i) ∧ p(y, i) i = j

(p(y, j)− p(x, j))+ j 6= i

Example 7. Suppose that p is a transition function on S = {1, 2, 3} with rows 2, 3 being
identical. Let p be the transition function from Proposition 7. Clearly, any coupling cor-
responding to p starting from (2, 3) or (3, 2) has coupling time equal to 1, and is therefore
maximal.

Suppose the coupling starts from (1, 2). We will show it is efficient. Observe that
once both copies are in {2, 3}, the process necessarily couples in one step. Each step, the
probability of coupling or a transition to a state of the form (2, 3), (3, 2) is therefore at least

17



∑
j=1,2,3

p((1, 2), (j, j)) + p((1, 2), (2, 3)) + p((1, 2), (3, 2))

= p(3, 3)− p((1, 2), (1, 3)) + p(2, 2)− p((1, 2), (1, 2)) + p((1, 2), (1, 1))

= p3,3 + p2,2 − p1,1 + 2p((1, 2), (1, 1)).

But p((1, 2), (1, 1)) = p(1, 1) ∧ p(2, 1). If p(1, 1) < p(2, 1), then the expression we obtain
is Tr(p). Otherwise, since p(2, 1) = 1−p(2, 2)−p(2, 3), the expression is equal to 2−p(2, 2)−
p(3, 3)− p1,1 = 2− Tr(p).

Now the probability of either coupling or transitioning to a state of the form (1, 2), (2, 1)
again is in either case at most |Tr(p)− 1|. As a result the probability of not leaving the set
{(1, 2), (2, 1)} by time t is bounded above by |Tr(p) − 1|t−1. Since the coupling time is at
less than or equal to the time the process leaves this set +1, we have that

P(τ > t) ≤ |Tr(p)− 1|t−1.

Since the eigenvalues of p are 1,0 and the Tr(p)− 1, this shows that the coupling is efficient.

We close this section with analysis of “almost all” 3-state Markov chains. We will work
under the following assumptions:

Assumption 1. 1. p is a transition function on the state space {1, 2, 3}.

2. all entries of p are strictly positive.

3. the three entries on each column of p are distinct.

Since p is stochastic and by Assumption 1 no two rows are identical, we have that for
i 6= j,Mij has 1 or 2 elements. As a result, il j or jl i (both hold if and only if pi,k = pj,k
for exactly one k).

Note that the relation “l” is invariant under relabeling (permuting) the states and that
it is not transitive.

Call our states i, j, k. Suppose il j. Then either

• il j and j l k; or

• il j and k l j, in which case, either

– il k and k l j; or

– k l i and il j.

The first implies il k and k l j, while the latter implies k l i and il j.

Bottom line, we can label the states as a, b, c so that

al b and bl c. (28)

Under a labeling satisfying (28), there are two alternatives:

1. al b, bl c, cl a. We call this a “cycle”.
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2. al b, bl c, al c, or “c is a dominating state”.

The main result of this section is the following:

Theorem 7. Let p be as in Assumption 1, and label the states so that (28) holds. Then the
greedy, sticky faithful coupling for for p is efficient for some initial points (x0, y0) x0 6= y0
if and only if

1. Mab = b,Mbc = a,Mac = b, and the coupling is efficient but not maximal for all such
(x0, y0); or

2. If Mbc =Mac = {c}, and the coupling is maximal whenever {x0, y0} 6= {a, b}.

We will now prove the theorem. Unfortunately, our proof will be based on analysis of
cases rather than an elegant argument.

Proof. We begin with an observation that greatly simplifies the structure of greedy cou-
plings. Let (X,Y ) be a greedy coupling for p. Conditioning on (Xt = i, Yt = j) and
{τ > t + 1}, then necessarily Xt+1 ∈ Mi,j and Yt+1 ∈ Mj,i. In other words, for a greedy
coupling,

{τ > t+ 1} ⊆ {(Xt+1, Yt+1) ∈MXt,Yt ×MYt,Xt}. (29)

If the process is such that at time t, one copy is at i and the other is at j, with i l j, the
conditioning on not coupling at time t+ 1, the copy in i will move to Mij and the copy in
j will move to one of the two remaining states Mji.

1 2 3
3

1

3

2

1
p(1, 1) p(1, 2) p(1, 3)

2
p(2, 1) p(2, 2) p(2, 3)

Figure 1: The graphical representation of the greedy Markovian coupling on three states
starting from (1, 2). Here, (29) follows from Assumption 1, which guarantees the “overlap”,
or leftover probability with which the process does not couple.

The diagrams below represent possible transitions for the couplings off the diagonal.
Any arrow from (i, j) to (i′, j′) represents a nonzero transition probability. A solid arrow
represents a transition from (i, j) to (i′, j′) and a dotted arrow represents a transition from
(i, j) to (j′, i′). We chose to use the dotted arrows in order to keep the diagrams compact.
We only listed states of the form (i, j), with i l j. Note that we are not missing any
transitions due to the assumed component-exchangeability.

In what follows, p0 is the restriction of p, the transition function of the coupling, off the
diagonal, that is to the set {1, 2, 3}2 − {(1, 1), (2, 2), (3, 3)}.

Dominating state

Without loss of generality, we assume 1 l 2, 2 l 3 and 1 l 3.
Each such case corresponds to an ordered sequence (s1, s2, s3), representing the unique

element in M12,M23,M13, respectively. Observe that
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• M12 =M23 = a =⇒ M13 = a. Indeed,M13 has a single element, and p1,a > p2,a >
p3,a.

• If a 6= b and M12 = a, M23 = b, then M13 ∈ {a, b}. Indeed, let c denote the third
state, then p1,c < p2,c < p3,c. Therefore, c 6∈M13.

This leaves a total of 15 = 3 + 6 ∗ 2 cases, we will now review.
All diagrams in red correspond to p0 being irreducible and aperiodic, and therefore the

coupling is not efficient for any initial states (x0, y0), x0 6= y0, per Theorem 5.
As for the remaining four diagrams, let’s consider first the three corresponding toM13 =

M23 = 3. In each of the diagrams, the set of states A = {(2, 3), (3, 2), (1, 3), (3, 1)} forms an
absorbing component for p0. Furthermore, A has period 2. At each unit of time, one copy
is at 3, alternating from being in first component to the second component. It therefore
follows from Corollary 1 that for any of the initial states in A the coupling is maximal.
When the initial state is not in A, then maximality fails because as can be seen from the
graphs, the support of Xt and Yt, conditioned on {τ > t} are not disjoint for t ≥ 3.

ase is M12 = 2,M23 = 1,M13 = 2. Here p0 is irreduciblebut not aperiodic. Suppose
that the initial state is (1, 2). Then the transitions with strictly positive probability under
p0 are

1. In one step to (2, 1) and to (2, 3).

2. In two steps, to (1, 2), (3, 2) and (1, 3).

3. In three steps, to (3, 1), (2, 3), (2, 1).

We observe that the supports of Xt and Yt, conditioned on {τ > t} are not disjoint (except
for the triviality at times t = 0 and t = 1), and therefore the coupling fails to be maximal
except at times 0 and 1 (where total variation distance between the distribution of Xt and
Yt is trivially equal to 1).

Nevertheless, letting

• ft(1) = 3, ft(3) = 2, ft(2) = 1 for t even; and

• ft(2) = 3, ft(2) = 2, ft(1) = 1 for t odd,

the condition on Proposition 6 holds for all t, which proves that the coupling is efficient.
Due to irreducibility, similar treatment holds for all remaining initial pairs.

M12 = 1
M23 = 1
M13 = 1

(1, 2)

(2, 3)

(3, 1)

M12 = 1
M23 = 2
M13 = 1

(1, 2)

(2, 3)

(3, 1)

M12 = 1
M23 = 2
M13 = 2

(1, 2)

(2, 3)

(3, 1)

M12 = 1
M23 = 3
M13 = 1

(1, 2)

(2, 3)

(3, 1)
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M12 = 1
M23 = 3
M13 = 3

(1, 2)

(2, 3)

(3, 1)

M12 = 2
M23 = 1
M13 = 1

(1, 2)

(2, 3)

(3, 1)

M12 = 2
M23 = 1
M13 = 2

(1, 2)

(2, 3)

(3, 1)

M12 = 2
M23 = 2
M13 = 2

(1, 2)

(2, 3)

(3, 1)

M12 = 2
M23 = 3
M13 = 2

(1, 2)

(2, 3)

(3, 1)

M12 = 2
M23 = 3
M13 = 3

(1, 2)

(2, 3)

(3, 1)

M12 = 3
M23 = 1
M13 = 1

(1, 2)

(2, 3)

(3, 1)

M12 = 3
M23 = 1
M13 = 3

(1, 2)

(2, 3)

(3, 1)

M12 = 3
M23 = 2
M13 = 2

(1, 2)

(2, 3)

(3, 1)

M12 = 3
M23 = 2
M13 = 3

(1, 2)

(2, 3)

(3, 1)

M12 = 3
M23 = 3
M13 = 3

(1, 2)

(2, 3)

(3, 1)

Cycle

Without loss of generality, 1 l 2, 2 l 3, 3 l 1. Now if M12 = M23 = i, then p1j < p2j <
p3j , for j ∈ {1, 2, 3} − {i}. Therefore 1 l 3, violating the assumption. Due to the cyclic
structure, we conclude thatM12,M23,M31 are distinct, reducing to the 6 permutations of
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{1, 2, 3}. Below are the corresponding diagrams, all of which are irreducible and aperiodic,
and therefore we conclude from Theorem 5 that the couplings are not efficient.

M12 = 3
M23 = 1
M31 = 2

(1, 2)

(2, 3)

(3, 1)

M12 = 3
M23 = 2
M31 = 1

(1, 2)

(2, 3)

(3, 1)

M12 = 2
M23 = 1
M31 = 3

(1, 2)

(2, 3)

(3, 1)

M12 = 2
M23 = 3
M31 = 1

(1, 2)

(2, 3)

(3, 1)

M12 = 1
M23 = 2
M31 = 3

(1, 2)

(2, 3)

(3, 1)

M12 = 1
M23 = 3
M31 = 2

(1, 2)

(2, 3)

(3, 1)
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