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Chapter 1

Probability Spaces

Idea: the mathematical formalism of chance.
The mathematical theory which formalizes chance is called probability theory. Probability theory

provides mathematical structures that can be thought of as abstract versions of “real world exper-
iments” (tossing a coin, gambling) with multiple possible outcomes (Heads/Tails, winning/losing a
certain amounts), along with measurements of “chances” of the various outcomes. These structures
are called probability spaces, and in this chapter we will develop them.

1.1 Measurable spaces

Throughout this chapter Ω will be assumed to be a nonempty set, which intuitively represents the set
of possible outcomes in some experiment. The set Ω is called the sample space, suggesting that we
view the experiment as a way to sample an outcome, an element of Ω. For example, the outcome of
each coin toss is a sample from the sample space {H,T}, and the outcome of a roll of a dice (assuming
we observe the number on the top face) is an element from the sample space {1, 2, . . . , 6}. We start
by developing the “language” we will use to describe possible outcomes. An explanation will follows
the definition.

Definition 1.1.1. A collection A of subsets of Ω is called an algebra, if

1. (not empty) Ω ∈ A.

2. (closed under complements) If A ∈ A then Ac (the complement of A) is in A.

3. (closed under finite unions) If A,B ∈ A, then A ∪B ∈ A.

By deMorgan’s laws an algebra is necessarily closed under finite intersections. Indeed, A ∩ B =
(Ac ∩Bc)c. If A,B are elements in an algebra A, then so is their difference: A−B := A ∩Bc, and of
course their symmetric difference, A△B := (A−B) ∪ (B −A).

The elements of an algebra (and later σ-algebra), each being a set of outcomes in the sample space,
should be viewed as statements we can make on the outcome of the experiment, and which can be
determined by the information available to us at the conclusion of the experiment. Think of rolling
a dice and observing the number on the top face. Then the sample space is Ω = {1, 2, . . . , 6}. Let’s
assume we have complete information. There is exactly one outcome (a single number), but we can
make multiple statements on it which will be determined as true or false at the conclusion of the
experiment. Here are several examples:

• “landed a 3”, the set A = {3}.

• “Not landed a 3”, Ac.

• “Landed an even number”, B = {2, 4, 6}.

• “Landed an even number or 3”, A ∪B.

• “Landed both on an even number and on 3”, A ∩B = ∅ = Ωc.
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6 CHAPTER 1. PROBABILITY SPACES

Let’s now change the experiment a little and assume that we are only told the parity of the number
on the top face. Though the sample space has not changed, we have less information on the outcome,
and there are only 4 valid statements on the outcome that we can determine as true or false at the
conclusion of the experiment: ∅ (“nothing”), {2, 4, 6} (landed even), {1, 3, 5} (landed odd), {1, 2, 3, 4, 6}
(anything). So each version of the experiment corresponds to a different algebra of sets.

There’s a correspondence between an algebra A and the set of indicator functions of elements in
A. Recall that 1A is the indicator function of the set A, if it is a function from Ω to {0, 1} which is
equal to 1 on A and 0 otherwise. For a collection A of subsets of Ω, let IA denote the set of indicator
of functions of elements in A. Then A is an algebra if and only if the constant function 1 ∈ IA, for
any A ∈ A, 1 − 1A ∈ IA, and for any A,B ∈ A the “addition” 1A ⊕ 1B , defined as max(1A,1B), is
also an element in IA (you can also replace this by a product of the functions. Why?).

As examples of algebras, consider the collection of subsets of Ω which are finite or have a finite
complement. Another example? Take Ω = [0, 1) and consider all finite unions of intervals of the form
[a, b) for 0 ≤ a < b ≤ 1. Why is this closed under complements? Draw such a set. Look at your
drawing. Now write your proof.

Here’s an important property of algebras.

Proposition 1.1.1. Let A1, A2, . . . be elements of an algebra. Then there exists a sequence of disjoint
elements in the algebra B1, B2, . . . such that for every n ∈ N, ∪n

j=1Aj = ∪n
j=1Bj.

Proof. Exercise.

Though the first object defined in this book, algebras are not going to be used very much in our
class. In order to prove nice theorems (nearly anything involving limits: Law of Large Numbers,
Central Limit Theorem. After all probability is a branch of analysis) we need richer structures that
allow to take limits. This leads to the definition of a σ-algebra (AKA σ-field, I term I will not use).

Definition 1.1.2. A collection F of subsets of Ω is a σ-algebra if

1. Ω ∈ F .

2. If A ∈ F then Ac ∈ F .

3. If A1, A2, · · · ∈ F , then ∪∞
i=1Ai ∈ F .

Thus a σ-algebra is a nonempty collection of subsets of Ω closed under complements and countable
unions. Note that this automatically implies being closed under finite unions, and under countable (and
finite) intersections. Of course, every σ-algebra is an algebra, but the converse is not true (example?).

In probability theory we use σ-algebras, not algebras, as the collection of statements on the outcome
of the experiment which we, the observers, can determine whether true or false at the conclusion of
the experiment. The additional requirement allows to form a rich collection of statements. When Ω is
finite every algebra is automatically a σ-algebra.

Here are some examples of σ-algebras.

1. The collection {∅,Ω}, also known as the trivial σ-algebra.

2. The power set of Ω, all subset of Ω, denoted by 2Ω.

3. The collection of all subsets of Ω which are countable (this includes finite) or have a countable
complement.

Exercise 1.1.1. Show that the last object in the list above is a σ-algebra. When is it the power set?

Definition 1.1.3. A measurable space is a pair (Ω,F) of a nonempty set Ω, the sample space, and a
σ-algebra F on Ω. Given a measurable space, the elements of F are called events.

A measurable space therefore represents the set of outcomes in the experiment, Ω, and the information
we have on the outcome at the conclusion of the experiment, F . By “information” we mean: all
statements on the outcome which we can determine as true or false at the conclusion of the experiment.

σ-algebras have some very nice properties.

Proposition 1.1.2. Suppose that I is a set of indices and that for each i ∈ I, Fi is a σ-algebra on Ω.
Then F = ∩i∈IFi is a σ-algebra.
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Proof. Exercise.

Exercise 1.1.2. Is the union of σ-algebras a σ-algebra?

Let’s look at some events obtained through countable operations.

Definition 1.1.4. Let A1, A2, . . . be events.

1. lim supj→∞ Aj := ∩∞
n=1∪j≥nAj. That is, the lim sup is the set {ω ∈ Ω : ω ∈ infinitely many Aj}.

For obvious reasons, this event is also denoted by {Aj ifinitely often} or {Aj i.o.}. Similarly,
the complement of this event is also denoted by {Aj f.o.} (f.o. for finitely often).

2. lim infj→∞ Aj := ∪∞
n=1∩j≥nAj. That is, lim inf is the set {ω ∈ Ω : ω ∈ all Aj’s from some j onwards}.

Note that any collection of subsets of Ω is a subset of the power set. This leads us to the following
definition:

Definition 1.1.5. Let G be a collection of subsets of Ω. The intersection of all σ-algebras containing
G is called the σ-algebra generated by G and is denoted by σ(G).

Sometimes we refer to σ(G) as the minimal σ-algebra or smallest σ-algebra containing G. This
leads us to some very important σ-algebras.

Definition 1.1.6. • Let T be a topology on Ω (if you’re not familiar with the notion, suppose
that we have a metric on Ω and T is the collection of all open sets). The Borel σ-algebra
(corresponding to T ) is σ(T ).

• Specifically, we write B(Rn) for the Borel σ-algebra on Rn when the latter is equipped with the
standard Euclidean metric.

Definition 1.1.7. Let F1 and F2 be σ-algebras on the sample spaces Ω1 and Ω2, respectively. The
product σ-algebra is the σ-algebra on thev product space Ω1 × Ω2 generated by the sets of the form
A×B = {(ω1, ω2) ∈ Ω1 × Ω2 : ω1 ∈ A,ω2 ∈ B}.

Exercise 1.1.3. Extend Definition 1.1.7 to a product of three σ-algebras.

Exercise 1.1.4. Show that B(R2) = B(R)× B(R).

There are also infinite products. In fact, much of our work will be in these measure spaces. Let’s
introduce one that will serve as faithfully and is perhaps the most important one, as nearly any result
in probability theory can be realized on it.

Example 1.1.1 (Infinite Coin Tossing). Though traditionally, the outcomes of tosses are labelled as
Heads or Tails, we will use 0 and 1. We introduce an important measurable space that will follow us
a very long way.

Let Ω = {0, 1}N, that is elements in Ω are sequences of the form ω = (ω1, ω2, . . . ), where ωj ∈ {0, 1}.
We will refer to ωj as the j-th coordinate of the infinite sequence ω, and we refer to the function
ω ∋ Ω → ωj ∈ {0, 1} as the j-th coordinate mapping.

We now introduce an algebra on this space, the algebra generated by the coordinate mappings,
the smallest algebra (intersections of algebra is also an algebra - there is less to check than for σ-
algebras!) which contained all sets determined by a single coordinate, namely all events of the form
{ω ∈ Ω : ωj ∈ A} for some A ⊆ {0, 1}, when ranging over all j ∈ N. There is an explicit description
of this algebra, which we now provide. For every n, let A1, . . . , An be each subsets of {0, 1} and define
the corresponding cylinder set IA1,...,An :

IA1,...,An
:= {ω ∈ Ω : ω1 ∈ A1, . . . , ωn ∈ An}.

Now let A be the set of finite unions of cylinder sets. Clearly Ω ∈ A. Also, by construction A is closed
under unions. What about complements? First observe that the intersection of any two cylinder sets
is a cylinder set. Next, every cylinder set is a finite intersection of cylinder sets, each determined by
a single coordinate. For example IA1,A2 = IA1 ∩ I{0,1},A2

. Note that the complement of a cylinder
set involving a single coordinate is also such a set. Namely IcA1

= IAc
1
, Ic{0,1},A2

= I{0,1},Ac
2
, etc.

Therefore by deMorgan’s laws, the complement of any cylinder set is the finite union of cylinder sets
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each involving one coordinate. Using this and the distributive properties of intersections of unions, we
conclude that the complement of any element in A is... in A. Done. In words (and you are welcome
to make this into a precise mathematical statement. It is an excellent exercise to identify the meaning
of “depenends” in the following statement): a subset of Ω is an element of A if and only if it depends
on a finite number of coordinates.

The infinite product σ-algebra F is σ(A). This is also the σ-algebra generated the coordinate
mappings (all sets determined by a single coordinate). Why?

What the difference between A and F? A world of difference, because the latter allows us to make
statements about the entire sequence, not only a finite number of coordinates. Word of warning, F
is not the power set. Again: there are sets not in F , but due to the extensive reach of iterations of
unions, intersections and complements, we need the axiom of choice to find such sets. We will show
how later.

Consider all of the following statements, each being an example of an element in F but not in
A. To do this, let’s define a sequence of elements in A: Aj = {ω : ωj = 1}, j ∈ N. All are events
determined by a single coordinate. Hence Aj ∈ A. Now, let’s consider all of the following statements:

• “1 appears”, namely ∪∞
j=1Aj. This is a countable union of elements in A. Its complement is

pretty boring. It consists of one element the constant sequence 0, the sequence (0, 0, . . . ). Clearly
{0} is not a finite union of cylinders, because it has one element, and every nonempty cylinder
has infinitely many elements.

• “1 appears infinitely many times”. This is, by definition (Definition 1.1.4), lim supj→∞ Aj or
{ωj = 1 i.o.}. Why? Let’s rewrite what we said in words: For every n ∈ N, there exists some
j ≥ n such that ωj = 1. In terms of set operations, this set is

A := ∩∞
n=1 ∪∞

j=n Aj = lim sup
j→∞

Aj .

• “The proportion of 1’s in the first n coordinates tends to a limit as n → ∞”. This one is harder
to express through set operations (yet completely possible), and we will develop other methods to
show it is an event when we discuss random variables.

As a closing comment (or exercise for you), a σ-algebra is either finite or uncountable. It can never
be countably infinite (to prove, consider an infinite σ-algebra. Then you have an countable sequence of
disjoint events, from which we can form an uncountable collection of sets through countable unions).
Therefore, though we can describe some or many elements in an infinite σ-algebra, we can rarely
describe all elements in the σ-algebra.
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1.2 Measures and Probability measures

We are ready to introduce the main subject of this chapter. By now we know what events are. We
now present the mathematical notion formalizing chance. It is pretty mundane: a function. Basically
a mathematical scale, assigning any event a “weight”, the probability of the event, representing how
“likely” the event is, in a scale of [0, 1]. We will define the slightly more general notion of a measure
first.

In this section we assume that (Ω,F) is a measurable space.

Definition 1.2.1. A measure is a function µ : F → [0,∞] which has the following properties:

1. µ(∅) = 0

2. (σ-additivity) If A1, A2, . . . are disjoint events, µ(∪∞
j=1Aj) =

∑∞
j=1 µ(Aj).

A measure is called a finite measure if µ(Ω) < ∞. A measure is called a probability measure if µ(Ω) = 1.
The triple (Ω,F , µ) is called a measure space, or a probability space if µ is a probability measure.

Note that the σ-additivity requires events to be disjoint, which is not really an obstacle, due to
Proposition 1.1.1: any union can be partitioned to a disjoint union through set operations.

Note that if we just wanted to define a probability measure we could replace the first item in the
definition by µ(Ω) = 1 (why?).

In the sequel we will use mostly P and Q for probability measures.
As you see, measures are functions whose domain is a σ-algebra. Why restrict to σ-algebra and not

work with the entire power set? Sometimes we can use the power set (most often when Ω is finite),
but when Ω is infinite, and we want additional properties from the measure (analogy: not “just” a
continuous function, but a continuously differentiable function), then almost always there will be some
serious obstacles which will not allow to define the measure on the power set. We will get to that later.
Time for some examples.

Example 1.2.1. Suppose that Ω is uncountable. Let F be the σ-algebra generated by the finite sets.
Then an element of F is a set which is either countable or has a countable complement. On F define:

1. µ(A) =

{
0 A is countable;

∞ otherwise
. This is an infinite measure.

2. P (A) =

{
0 A is countable;

1 otherwise
. This is a probability measure.

Exercise 1.2.1. Show that the functions defined in Example 1.2.1 are as claimed.

Example 1.2.2. Uniform measure. Let Ω be finite, equipped with the power set. Define P (A) = |A|
|Ω| .

Then P is a probability measure known as the uniform measure.

Example 1.2.3. Discrete probability measure. Let Ω be countable and F = 2Ω, and let p : Ω → [0, 1]
satisfy

∑
ω p(ω) = 1. Define P (A) =

∑
ω∈A p(ω). The uniform measure is a special example of a

discrete probability measure.

Example 1.2.4. Dirac’s Delta measure. Let x0 ∈ Rn. On the measurable space (Rn,B(Rn)), define

P (A) =

{
1 x0 ∈ A

0 otherwise

Exercise 1.2.2. Show that the object defined in Example 1.2.4 is a probability measure.

Exercise 1.2.3. Let µ1 and µ2 be measures on a measurable space.

1. Show that if c ≥ 0, then cµ1 and µ1 +µ2 are also measures (in fact, an infinite sum of measures
is a measure, if you want to challenge yourself. We’ll be able to show this easily as an application
of the Monotone Convergence Theorem later).

2. Is max(µ1, µ2) necessarily a measure?
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1.2.1 Basic Properties of Measures

Proposition 1.2.1. Let µ be a measure. Then

1. (Monotonicity) For events A ⊆ B, we have µ(A) ≤ µ(B).

2. (Subadditivity) If A1, A2, . . . are events, then µ(∪∞
j=1Aj) ≤

∑∞
j=1 µ(Aj).

3. (Continuity from below) If A1 ⊆ A2 ⊆ · · · are events, then µ(∪∞
j=1Aj) = limj→∞ µ(Aj).

4. (Continuity from above) If B1 ⊆ B2 ⊆ · · · are events and µ(B1) < ∞, Then µ(∩∞
j=1Bj) =

limj→∞ µ(Bj).

Proof. Exercise.

Proposition 1.2.2. Let P be a probability measure. Then

1. P (Ac) = 1− P (A).

2. (Inclusion/Exclusion) P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof. Exercise.

Exercise 1.2.4. 1. State and prove the Inclusion/Exclusion Principle: the extension of Proposition
1.2.2-2 for a finite number of events.

2. State and prove Bonferroni inequalities (do some research).

Next we present ways to define new measures from existing measures. There are multiple ways,
but at this stage we present only two.

Definition 1.2.2. Let F ∈ F . The restriction of the measure µ to F , denoted by µ|F is the measure
defined as follows:

µ|F (A) := µ(A ∩ F ), A ∈ F .

Exercise 1.2.5. Show that µ|F defined above is indeed a measure.

Definition 1.2.3. Let P be a probability measure and let F ∈ F satisfy P (F ) > 0. The measure Q,
defined through

Q(A) :=
P (A ∩ F )

P (F )
,

is a probability measure called P conditioned on F . It is denoted by P ( · |F ) (that is we write P (A|F )
instead of Q(A)).

Conditional probabilities are the mathematical objects representing our model when some concrete
information is given. Let’s look at a simple example. Consider the uniform probability measure on
{1, 2, . . . , 6}, a roll of a dice. The probability of any number is 1

6 . If I tell you that the the dice was
rolled and landed on an even number, then with this new information, the probabilities are different.
The probability of {1, 3, 5} is now zero, and the probability of each of 2, 4, 6 is 1

3 . Given this extra
information, the set B = {2, 4, 6}, the probability of each event is now P (A|B).

1.2.2 Completion of a measure

To avoid “going out of bounds” when taking limits some types of limits, we need the following technical
but important extension result. It is a “set and forget” type of thing.

Definition 1.2.4. A measure space (Ω, F̄ , µ̄) is complete if for each N ∈ F̄ satisfying µ̄(N) = 0, all
subsets of N are in F̄ .

We will now show how to start from a measure space (Ω,F , µ) and extend it to a complete measure
space. A null event is an event N satisfying µ(N) = 0. Let N be the collection of null events in F .

We start by defining

F̄ = {A ∪ L : A ∈ F , L ⊆ N for some N ∈ N}.
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Proposition 1.2.3. 1. F̄ is a σ-algebra which contains F .

2. Every subset of a null event is in F̄ .

Proof. Clearly Ω = Ω ∪ ∅ ∈ F̄ . Next, for A ∈ F , (A ∪ L)c = Ac ∩ Lc. Now L ⊆ N for some null event
N . So N c ⊂ Lc. We can therefore write

Ac ∩ Lc = (Ac ∩N c) ∪ (Ac ∩ (Lc ∩N)).

The first inserction is in F and the second is a subset ofN , therefore we have an element in (A∪L)c ∈ F̄ .
The fact that F̄ is closed under countable unions is trivial.

The second assertion follows from the definition of F̄ .

Next define µ̄ a function on F̄ through µ̄(A ∪ L) := µ(A).

Exercise 1.2.6. Show that µ̄ is a measure.

We conclude with what seems to be the obvious conclusion:

Proposition 1.2.4. The measure space (Ω, F̄ , µ̄) constructed above is a complete measure space.

We call the measure space constructed above the completion of (Ω,F , µ), and refer to µ̄ as the
completion of µ. Because we can easily complete every measure space, in the sequel - unless specifically
indicated otherwise - we will assume that all measure spaces are complete.

1.2.3 The Lebesgue Measure and the Infinite Product Measure

In this section we record the existence and some basic properties of two very important measures. The
proofs will not be given in this course.

We begin with the Lebesgue measure.

Theorem 1.2.1. There exists a unique measure m on B(R) satisfying m([a, b]) = b− a for all a < b.

The completion of this measure is called the Lebesgue measure. We will abuse notation and use
m for the Lebesgue measure as well. The domain of the Lebesgue measure is called the Lebesgue
σ-algebra, and is denoted by L.

The Lebesgue measure will be very useful for integration on the real line and beyond. You’ll see.
This is the single most important measure.

Exercise 1.2.7. 1. What is the Lebesgue measure of a countable set?

2. Show that for any bounded interval with endpoints a ≤ b (open.closed,clopen), the Lebesgue
measure of the interval is equal to b− a.

3. What is the Lebesgue measure of all irrational numbers in the interval [a, b]? What about (a, b)?

With the Lebesgue measure introduced it would be easier (and useful) to present another method to
generate measures from the ones we discussed before. A function f : R → R is called Borel measurable
if for every B ∈ B(R), f−1(B) ∈ B(R). That is the pre-images of Borel sets are... Borel sets.

For any function f : R → R, the collection of sets Ff := {B : f−1(B) ∈ B(R)} is a σ-algebra
(why?).

1. Recall that f is continuous then the pre-image of any open interval is open, and therefore Ff

contains all open intervals, and so Ff ⊇ B(R) which also implies that f is Borel measurable.

2. If f is piecewise continuous (continuous possibly except for finitely many jumps) then a short
argument shows that it is also Borel measurable.

3. If f is monotone (nondecreasing or non-increasing), then the pre-image of any interval is always
an interval, and so Ff ⊆ B(R), and, yet again: f is Borel measurable.

Definition 1.2.5 (Pushforward measure). Let µ be a Borel measure on R. Let f : R → R Borel-
measurable. The pushforward measure µf is a Borel measure defined through µf (A) := µ(f−1(A)) =
m({x ∈ R : f(x) ∈ A}.
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Exercise 1.2.8. Show that µf is a measure.

Example 1.2.5. Consider the restriction of m to the interval (0, 1). This is a Borel probability
measure.

1. Let f(x) = 1[0,p]. The pre-image of 0 under f is the interval (p, 1) whose measure is 1− p, and
the pre-image of 1 is the interval (0, p) whose measure is p. Therefore, mf is the measure on
all subsets of {0, 1} assigning measure p to 1 and 1 − p to 0. Looks familiar? (Hint: Bernoulli
random variable).

2. Let f(x) = ln 1
1−x . Then for any y ∈ (0, 1), the pre-image of the interval (0, y] is {x : ln 1

1−x ≤
y} = {x : 1

1−x ≤ ey} = {x : x < 1 − e−y}, and therefore has measure 1 − e−y. Thus mf is a

measure on the Borel subsets of (0,∞) satisfying mf ({x : x ≤ y}) = 1 − e−y. Is that familiar?
(Hint: Exponential random variable).

We continue to an infinite product measure.

Theorem 1.2.2 (Infinite Product Measure). Consider the infinite product space (Ω,F) of Example
1.1.1, of infinite coin tosses.

Let p ∈ (0, 1). There exists a unique probability measure P on F satisfying that for every n ∈ N
and w1, . . . , wn ∈ {0, 1}: P ({ω : ω1 = w1, . . . , ωn = wn})p

∑n
j=1 wj (1− p)n−

∑n
j=1 wj ,

As mentioned before, we can think of each element in Ω as of an infinite sequence of coin tosses.
The probability measure thus defined has the following properties:

Proposition 1.2.5. 1. For every j, P ({ω : ωj = 1}) = p = 1 − P ({ω : ωj = 0}). That is the
probability of each toss being 1 is p and being 0 is 1− p.

2. For every cylinder set IA1,...,An
, P (IA1,...,An

) =
∏n

j=1 P (IAj
), that is, probabilities of cylinder

events are products of the probabilities of the individual statements on each coordinate.

Why can’t we define the infinite product measure on the power set of Ω? Here’s why. This is a
sketch, not a complete proof. First, we will make our life a little simpler by replacing the underlying
sample space by {0, 1}Z, all infinite sequences of zeros and ones, indexed by the integers. An element
in this space is of the form (. . . , ω−1, ω0, ω1, . . . ). We can define the product σ-algebra and the product
measure on this space similarly to how we did it for {0, 1}N, as the σ-algebra generated by cylinder
sets. We omit the simple details. Let’s consider the case p = 1

2 (this does not matter). Define
S : {0, 1}Z → {0, 1}Z to be the right shift: (Sω)j = ωj−1. Observe that by construction, P is shift
invariant: P (SA) = P (A) for all A which are cylinder sets. You will be able to show later (Exercise
1.3.1) that this property holds for all A ∈ F . We will now show that there is a set not in F . We argue
by contradiction, assuming F is the power set. Write S−1ω for the left shift (inverse of right shift),
and more generally Sjω for the shift of ω |j| times to the right or left according to whether j > 0 or
j < 0. Of course S0ω is ω.

Clearly P ({ω}) = 0 (why?). For every element ω ∈ {0, 1}Z, let [ω] := {Sjω : j ∈ Z}, be the set
of all shifts of ω. The set [ω] is finite if and only if ω is periodic. As there are only countably many
periodic elements in our uncountable sample space, the probability the union of set [ω] which are finite
is zero. Note that for every two elements ω, ω′, either [ω] = [ω′] or [ω]∩ [ω′] = ∅. Now pick one exactly
one element from each of the distinct infinite sets [ω] (this requires the axiom of choice) and form a
set from all these elements (one from each [ω]). Call this set A. Every nonperiodic element in our
sample space is in the union ∪j∈ZS

jA. Clearly, for j ̸= j′, SjA ∩ Sj′A = ∅, and by our assumption,
P (SjA) = P (A). Combining these observations, 1 = P (∪j∈ZS

jA) =
∑

j∈Z P (SjA) =
∑

j∈Z P (A). Oh
shift! That’s a contradiction. To what? the assumption that F is the power set. The set A is therefore
not in F . We can’t really describe concretely, but it’s out there in the wild.

Bottom lime: we can’t construct a probability measure which is both shift invariant and is defined
on the power set. Bummer. Have to stick to σ-algebras.

Let’s look at a nice result we will later complement with a partial converse and plays an important
role in probability.

Proposition 1.2.6 (Borel-Cantelli I Lemma). Let µ be a measure. Suppose that A1, A2, . . . are events
satisfying

∑∞
j=1 µ(Aj) < ∞. Then µ(Aj i.o.) = 0.
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Proof. For n ∈ N, let Bn := ∪j≥nAj . Then B1 ⊆ B2 ⊆ · · · , and by the subadditivity property,

µ(∪j≥nAj) ≤
∞∑
j=n

µ(Aj) < ∞.

Since µ(B1) < ∞, it follows from continuity from above, that

µ(lim supAj) = µ(∩∞
n=1Bn) = lim

n→∞
µ(Bj) ≤ lim

n→∞

∞∑
j=n

µ(Aj) = 0,

where the last equality follows from the fact that the tail of a convergent series tends to zero.

Example 1.2.6. Consider the infinite product measure of Theorem 1.2.2 with p = 1
2 . For each n, let

An be initial segmnet of the sequence of length n is repeated from the n+1-th coordinate. This is better
explained in symbols:

An := {ω : ωn+k = ωk : k = 1, . . . , n}.

We have P (An) = 2n, and therefore the Borel-Cantelli lemma P (An i.o.) = 0.
Let’s remove the restriction of repeating the initial segment from the n + 1-th coordinate, and

define instead Bn as the event that the initial segment of length n is repeated infinitely(!) many times
(anywhere along the sequence). We have P (Bn) = 1, and therefore P (∩∞

n=1Bn) = 1. Thus, each initial
segment is repeated infinitely many times a.s.

Patience pays?

Exercise 1.2.9. Prove the second assertion in Example 1.2.6.
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1.3 Monotone Class and Π− Λ Theorems

Time for our first theorem. As σ-algebras are often elusive, it may be a good idea to find tools that
will allow us to extend results from smaller and easier to manage collections of sets to an entire σ-
algebra. One such tool is the monotone class theorem. To understand the need for such a tool, consider
Theorem 1.2.1. It tells us that there exists a measure on B(R) with a certain property: the measure
of an interval is its length. It also says that there’s only one such measure. But why? B(R) is much
more than just intervals.

Definition 1.3.1. A collection M of subsets of Ω is a monotone class if both of the following hold:

1. If A1 ⊆ A2 ⊆ . . . are elements in M, then ∪jAj ∈ M.

2. If A1 ⊇ A2 ⊇ . . . are elements in M, then ∩jAj ∈ M.

In words, a monotone class is a collection of subsets which is closed under monotone limits. Every
σ-algebra is a monotone class.

Theorem 1.3.1 (Monotone Class Theorem). Let A be an algebra and let M be a mononone class
satisfying A ⊂ M. Then σ(A) ⊂ M.

Before moving to the proof (I think you’ll appreciate its beauty), let’s consider an application.

Proposition 1.3.1. Let A be an algebra on a sample space Ω. Suppose that P and Q are probability
measures on σ(A), which satisfy P (A) = Q(A) for all A ∈ A. Then P = Q.

Proof. Let M = {B ∈ σ(A);P (B) = Q(B)}. Then M is a monotone class due to the continuity
of probability measures with respect to monotone limits. Also, by assumption A ⊆ M. The result
follows immediately from the Monotone Class Theorem.

As a practical application, let’s consider the restriction of the Lebesgue measure to the interval
[0, 1), and define the algebra consisting of all finite unions of sets of the form [a, b) for 0 ≤ a < b ≤ 1.
It is easy to see that this is indeed an algebra: it is not empty, it is closed under finite unions, as for
the complements, draw a picture, then write a proof: they’re also of this form. The restriction of the
Lebesgue measure to [0, 1) is a probability measure, and the uniqueness statement holds: there is no
other way to form a measure on the Borel subsets of [0, 1) which assigns each interval its length. You
can push this argument a little further to prove the uniqueness of the Lebesgue measure on R. Give
it a try! The key idea is to exhaust each unbounded set by bounded sets increasing to it.

Proof. As with σ-algebras the intersection of monotone classes all containing some non empty collection
of subset of Ω is by itself a monotone class. To avoid noise, there is no loss of generality assuming that
M is the intersection of all monotone classes containing A, informally, the monotone class generated
by A, or the “smallest” monotone class containing A. Remember that.

The proof continues in two steps. The first step is to identify all elements in M whose intersection
with elements of A remains in M. Formally, define

M1 := {B ∈ M : A ∩B ∈ M, for all A ∈ A}.

Now guess what? M1 is a monotone class because M is. Check! Oh, and A is an algebra, so clearly
A ⊂ M1. Now here’s the magic. By construction M1 ⊆ M, but by the minimality assumption on M,
necessarily M ⊆ M1. So equality holds. What did we just prove? The intersection of any element in
M with any element in A is in M.

The next step is pushing this further. Let

M2 := {B ∈ M : A ∩B ∈ M, for all A ∈ M}.

Only one thing changed from the definition of M1: now we look at all element in M whose intersection
with any element in M (not “just” A) is again in M. Bold move. It is no surprise that M2 is a
monotone class. Also, we showed in the first step that the intersection of every element in A with any
element in M is in M, so necessarily A ⊆ M2. Or, M2 is a monotone class containing A. As in the
first step, we conclude that M2 = M.
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Let’s digest what we have just proven: the intersection of any two elements in M is in M. That’s
it. M is closed under finite intersections. Nice property. What about complements? Well, I guess by
now you know what we’re going to do:

M3 := {B ∈ M : Bc ∈ M}.

Yes. This is a monotone class (this explains why we require both monotonicity in both directions,
right?), and it contains A. The minimality of M dictates that M3 is M.

Let’s record a few things we know by know about M. It (i) contains Ω (because A does); (ii) is
closed under complements; (iii) is closed under finite intersections. Of course, with (i) and (ii) (and
deMorgan’s laws), (iii) is equivalent to “closed under finite unions” Sounds familiar? Yes, M is an
algebra. To show that is is a σ-algebra, it remains to show it is closed under countable unions. But
this is obvious: Let A1, A2, . . . be elements in M. For every n, the finite union Bn := ∪n

j=1Aj is in
M. Of course, B1 ⊆ B2 ⊆ . . . . Therefore the union ∪∞

j=1Bj = ∪∞
j=1Aj is in M.

Time to finish: M is a σ-algebra. It contains A. Because every σ-algebra is a monotone class, the
minimality of M dictates that M ⊂ σ(A). But hey, σ(A) is also minimal (intersection of all σ-algebras
containing A). So M = σ(A).

Exercise 1.3.1. Consider the probability space presented in the discussion below Proposition 1.2.5.
Show that

1. SA ∈ F for all A ∈ F .

2. P (SA) = P (A) for all A ∈ F .

Careful inspection of the monotone class theorem, leads to the proof of another (and perhaps even
more useful) theorem. We had an algebra A contained in a monotone class M. In the first two steps
of the proof, we only used the fact that an algebra is closed under finite intersections. This suggests
that we may be able to leverage the ideas to prove a different version in which some of the assumptions
on A are passed to over M. Specifically, we define the following:

Definition 1.3.2. 1. A collection P of subsets of Ω is called a π-system if it has at least one
element, and for any A,B ∈ P, A ∩B ∈ P.

2. A collection L of subsets of Ω is called a λ-system if

(a) Ω ∈ L
(b) (Closure under relative complements) If B,A ∈ L and A ⊆ B, then B −A ∈ L
(c) If A1 ⊆ A2 ⊆ · · · ∈ L, then ∪∞

j=1Aj ∈ L.

So a π-system requires less than an algebra (and every algebra is a π-system), and a Λ system
requires more than a monotone class (every λ-system is a monotone class, why?). Following arguments
we’ve seen before, if P is a π-system, the intersection of all λ-system containing it is also a λ-system,
the minimal λ-system containing P. We have the following:

Theorem 1.3.2 (π − λ Theorem). Let P be a π-system and let L be a λ-system with P ⊆ L. Then
σ(P) ⊆ L.

Proof. This is a sketch. Without loss of generality L is the minimal λ-system containing P. Repeating
the argument in the first two steps of the proof of the Monotone Class Theorem 1.3.1 (those involving
M1,M2), we have that L is closed under finite intersections. Since by assumption L contains Ω and
is closed under complements, all that remains to complete the proof (showing that it is a σ-algebra)
is to show that if (Aj : j ∈ N) is a sequence in L, then ∪∞

j=1Aj ∈ L. Thus, if A,B ∈ L we have that
A ∪ B = (Ac ∩ Bc)c ∈ L. Now look at our sequence (Aj : j ∈ N). As Aj ∈ L, so is every finite union
∪n
j=1Aj , and by the third assumption we have that ∪∞

j=1Aj ∈ L.

Exercise 1.3.2. Review the proof and find where we use the second assumption (relative complements)
in the definition of a λ-system (it’s hidden!)
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1.4 Independence

In this section we fix a probability space (Ω,F , P ).
Independence is one of the most important notions in probability theory. It allows to do (many)

computations and prove the classical limit theorems. Some would even go as far to say that it is what
distinguishes probability from measure theory. So what is it all about? Actually, products. Let’s begin
with the classical definition you’re probably familiar with. Then delve into a more general definition.

Definition 1.4.1. Let I be an index set and let (Ai : i ∈ I) be events. We say that these events are
independent of for any finite subset J of I, P (∩j∈JAj) =

∏
j∈J P (Aj).

To see some examples of independent events, let’s take our infinite product space from Theorem
1.2.2. Let I = N, and for i ∈ N, let Ai be an event determined by the i-th coordinate of ω, ωi. Then
by construction, (Ai : i ∈ N) are independent. This can be recast as: the individual coin tosses in this
model are independent.

When looking at only two events, say A and B, independence is equivalent to the following: either
P (B) = 0 or P (A|B) = P (A). Note that independence is symmetric in A and B, so we can swap the
roles. Either way, “knowing” B does not alter the probability of A.

Note that in general we can have A and B independent, B and C independent, A and C inde-
pendent, but not A,B,C. So this definition really requires looking at all finite intersections, not just
intersections of pairs.

It is a simple exercise to show that if (Ai : i ∈ I) are independent then the same applies to
(Bi : i ∈ I) where for each i, Bi = Ai or Bi = Ac

i , with the choices made arbitrarily.
Let’s prove a partial converse to the Borel-Cantelli I Lemma 1.2.6.

Proposition 1.4.1 (Borel-Cantelli II). Suppose that A1, A2, . . . are independent events satisfying∑∞
j=1 P (Aj) = ∞. Then P ({Aj i.o}) = 1.

Proof. We will use the following inequality:

1− x ≤ e−x x ∈ R.

We will show that the probability of the complement of the event in question is zero. By definition
of lim supAj , and deMorgan’s laws, the complement is ∪∞

n=1 ∩j≥n Ac
j . Because of subadditivity, it is

enough to prove that for each n ∈ N, P (∩j≥nA
c
j) = 0. By continuity from above independence, the

inequality above, and our assumption,

P (∩j≥nA
c
j) = lim

m→∞
P (∩m

j≥nAj) = lim
m→∞

m∏
j=n

P (Ac
j) ≤ e−

∑∞
j=n P (Aj) = e−∞ = 0.

Example 1.4.1. Suppose that A1, A2, . . . are independent events with P (Aj) < 1 for all j and
P (∪∞

j=1Aj) = 1. We will show that P ({Aj i.o.}) = 1. Clearly, P (∩∞
j=1A

c
j) =

∏∞
j=1(1 − P (Aj)) = 0,

and therefore
∑∞

j=1 P (Aj) = ∞, so Borel Cantelli II holds.

Here’s a nice way to see the difference between the two Borel-Cantelli Lemmas:

Example 1.4.2. Suppose we performing the following sequence of experiments. In the n-th experiment
we pick an integer from {1, . . . , n} uniformly, independently of previous experiments.

1. What is the probability that 1 will be selected infinitely often? Let An be the event that 1 is selected
in the n-th experiment. Then P (An) =

1
n . By Borel-Cantelli II, we have P (An i.o. ) = 1, and

so we we will see 1 infintely often a.s.

2. What is the probability that 1 will be repeated successively infinitely many times? Well, the
event 1 is sampled at the n-th and the n+ 1-th times is An ∩An+1 and therefore has probability
1
n

1
n+1 ≤ 1

n2 . By Borel-Cantelli I, the probability of 1 being selected successively infinitely often
is 0. Or: we will have only finitely many successive pairs of 1 (or any number!) a.s.

We move to an important generalization of independence of events.
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Definition 1.4.2. Let I be an index set and let (Fi : i ∈ I) be σ-algebras with Fi ⊂ F for all i ∈ I.
The family (Fi : i ∈ I) is independent if every family (Ai : i ∈ I, Ai ∈ Fi) is independent.

Example 1.4.3. Consider the infinite product measure of Theorem 1.2.2. For n ∈ N, let Fn = σ({ω :
ωn = 1}). That is Fn is the σ-algebra generated by the n-coordinate mapping (it has four elements: all
statements that can be made on the n-th coordinate). By construction (Fn : n ∈ N) are independent
σ-algebras.

Let’s consider two different applications of the Π − Λ theorem, Theorem 1.3.2, both of which
involving independence.

Theorem 1.4.1. Let (Pn : n ∈ N) be a sequence of independent Π-systems. That is for any n ∈ N
and Aj ∈ Pj, j = 1, . . . , n.

P (∩n
j=1Aj) =

n∏
j=1

P (Aj).

Then (σ(Pn) : n ∈ N) are independent.

Proof. Since independence is determined by finite intersections, it is sufficient to show that for every
n, the σ algebras in the finite sequence (σ(Pj : j = 1, . . . , n) are independent. To do that, fix any n
and define the following:

L = {A ∈ σ(P1) : P (A ∩n
j=2 Aj) = P (A)

n∏
j=2

P (Aj), Aj ∈ Pj , j = 2, . . . , n}.

By assumption, P1 ⊆ L. Also, as you may have already guessed, L is a Λ-system. Indeed, if A ⊆ B
are events in L, then

P ((B −A) ∩ ∩n
j=2Aj) = P (B ∩ ∩n

j=2Aj)− P (B ∩ ∩n
j=2Aj).

As A,B ∈ L, and A ⊆ B, the righthand side is equal to P (B − A)
∏n

j=2 P (Aj), and so B − A ∈ L.
Next, let L1 ⊆ L2 ⊆ . . . be a sequence in L. Then the monotonicity of the measure guarantees that

P (∪∞
k=1Lj ∩ ∩n

j=2Aj) = lim
N→∞

P (LN ∩ ∩n
j=2Aj) = lim

N→∞
P (LN )

n∏
j=2

P (Aj) = P (∪∞
k=1Lj)

n∏
j=2

P (Aj).

Thus, L = σ(P1), and so σ(P1),P2, . . . ,Pn are indepednent. Repeat the argument for this new
sequence, now working on P2, and iterate until the result follows.

Here’s another theorem, whose proof is essentially the same.

Theorem 1.4.2. Let (Gn,i : n ∈ N, i = 1, 2) be independent σ-algebras. Let H = σ(∪∞
n=1Gn,2). Then

(H,Gn,1 : n ∈ N) are independent.

Note that without loss of generality we may assume that one or both of the sequences (Gn,j : n ∈ N)
is finite by letting Gk,j = {∅,Ω} for all but finitely many k’s.

Proof. Let P be all sets which are finite intersections of elements in ∪∞
n=1Gn,2. This is a π-system.

Now Let L be the set of all elements in H which are independent of (Gn,1 : n ∈ N). By assumption
P ⊆ L. We claim L is a λ-system. Why? It contains Ω, it is closed under increasing limits (continuity
of probability with respect to monotone limits), and it is closed under relative complements. Indeed,
take n ∈ N and G1, . . . , Gn satisfy Gj ∈ Gj,1, then letting G = ∩n

j=1Gj , and taking elements A ⊆ B in
L we have

P (G ∩ (B −A)) = P (G ∩B)− P (G ∩A) = P (G)P (B)− P (G)P (A) = P (G)P (B −A).

Therefore the π − λ theorem asserts that L contains σ(P) = H.

We’re about to reveal an interesting truth. We need a definition:

Definition 1.4.3. Let (Fn : n ∈ N) be sub-σ-algebras. Define Fn,∞ as σ(∪k≥nFk), and let T =
∩∞
n=1Fn,∞. Then T is called the tail σ-algebra and events in T are in the Tail σ-algebra.
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Let’s continue Example 1.4.3. The tail σ-algebra consists of all events which do not depend on any
finite set of coordinates. This may sound weird at first, but all events we introduced in Example 1.1.1
are tail events. Why? Each such event is in Fn,∞, and also the events in Example 1.2.6. What events
are not in T ? Every nontrivial ( ̸= ∅,Ω) cylinder event. Tail σ-algebras of independent σ-algebras have
an interesting property:

Theorem 1.4.3 (Kolmogorov’s Zero-One Law). Let (Fn : n ∈ N) be independent σ-algebras and let
T be the corresponding tail σ-algebra. Then T is degenerate: for every A ∈ T , P (A) ∈ {0, 1}.

Proof. We will show that every A ∈ T is independent of itself. That is P (A) = P (A∩A) = P (A)2, or
P (A) ∈ {0, 1}.

By Theorem 1.4.2, Fn+1,∞ is independent of F1, . . . ,Fn. Since T is a subset of Fn+1,∞, it is
independent of F1, . . . ,Fn for every n which in turn implies it is independent of (Fn : n ∈ N). A
second application of the theorem then gives T is independent of σ(Fn : n ∈ N), which contains T .

Example 1.4.4. We continue Example 1.4.3. Let I ⊆ (0, 1) be an interval. Define Sn =
∑

j≤n ωj,

and let AI = {ω : limn→∞
Sn

n (ω) ∈ I}. Thus, AI is the event that limn→∞ Sn/n exists and is in the
interval I. This is a tail event, and therefore P (AI) is either 1 or 0. No need for further calculations!
As you probability know the value is determined according to whether p ∈ I or not. We will get there
soon.



Chapter 2

Random Variables

Not random and not variables. Just an old name that stuck. A more fitting description would be
“measurable functions”. The idea: assign numerical values to elements in our sample space. This is
so we can quantify outcomes (e.g. for assigning a monetary or other value to an outcome in a game of
chance).

In this chapter we will introduce the mathematical notion of RVs and will present the Lebesgue
integral which is the tool through which define expectations of RVs.

2.1 Definitions and Basic Properties

Throughout this section we’ll assume (Ω,F) is a measurable space. In this section, we stress that we
do not (and will not) use any specific probability measure to define a RV. The relation between RVs
and probability measures will be presented later.

We’ve already seen random variables. Here. If A is an event, the indicator function 1A is a random
variable. In fact, these are the building blocks of all random variables and Lebesgue integration theory.
More later.

Definition 2.1.1. A function X : Ω → [−∞,∞] is a random variable (RV AKA Borel measurable
function) if for any Borel subset B of [−∞,∞] the preimage of B, X−1(B) := {ω : X(ω) ∈ B}, is an
event.

The Borel σ-algebra on [−∞,∞], denoted by B([−∞,∞]) is the σ-algebra generated by the all sets
of the following forms (a, b), [−∞, b), (a,∞], ranging over −∞ < a < b < ∞ (equivalently, all intervals
of the first form and the singletons {±∞}). Every interval of any type is in this σ-algebra because it
can be obtained by countable unions and intersections.

Point is: a given function is a RV if statements you can make about its values (Borel sets) are
events.

Trivial but important: Pre-images (unlike images!) commute with set operations: X−1(Ac) =
(X−1(A))c, X−1(A ∪ B) = X−1(A) ∪ X−1(B). Same with intersections and countable unions and
intersections.

We don’t really need to go through all Borel sets to verify that a function is indeed a RV. There’s
an easy solution.

Proposition 2.1.1. Let X : Ω → [−∞,∞]. Then X is a RV if and only if X−1([−∞, b]) ∈ F for all
b ∈ R.

Proof. If X is an RV, then because [−∞, b] is a Borel set, it follows that the condition in the theorem
holds.

Let’s prove that the condition is sufficient. Let G = {A ∈ B([−∞,∞]) : X−1(A) ∈ F}. Clearly
Ω ∈ G (take A = [−∞,∞]), clearly G is closed under complements (X−1(Ac) = (X−1(A))c), and G is
closed under countable unions (why?). So it’s a σ-algebra. It is enough to show it contains all sets of
the three forms generating the Borel σ-algebra. This is done by simple manipulations. Let’s go.

1. First [−∞, b) = ∪∞
n=1[−∞, b− 1

n ]. Therefore, X
−1([−∞, b)) = ∪∞

n=1X
−1([−∞, b− 1

n ]), a count-
able union of events.

19
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2. Clearly, (a,∞] = [−∞, a]c, so X−1((a,∞]) = (X−1([−∞, a])c, an event.

3. Finally, (a, b) = [−∞, b) ∩ (a,∞], and so X−1((a, b)) is the intersection of two events. Done.

Of course, we can replace the intervals [−∞, b] with intervals [−∞, b) or intervals (a,∞] or even
restrict a, b to any dense set (e.g. rationals). We just gave one choice. The idea should be clear now.

We did allow infinite values because this is the right thing to do, but in the sequel, we will often
reduce the discussion to RVs taking only real values or such that may take infinite values but (after
we make the connection with probability spaces) this happens with probability zero (think of the first
time a coin lands Heads. Theoretically can take - literally - forever).

We will also often use less cumbersome notation. For example instead of writing X−1((a, b)) we
will write {ω : X(ω) ∈ (a, b)} or {X ∈ (a, b)} or {a < X < b}.

Indicators are so important that we will reintroduce them. If A is an event, the indicator of A (in
other areas of analysis it may be called the characteristic function. Not a good choice in probability,
as this name is already taken by some other object) is the function:

1A(ω) =

{
1 ω ∈ A

0 otherwise.

Why is this a RV? The pre-image of any set is one of the following events: empty, Ω, A or Ac

according to whether the set does not include 0 or 1, includes 1 but not 0, includes 0 but not 1, or
includes both. Simple. Indicators are also called Bernoulli RVs.

Definition 2.1.2. A RV X is called simple if its image X(Ω) = {X(ω) : ω ∈ Ω} is a finite subset of
R.

Of course, every indicator is a simple RV. We have the following simple proposition.

Proposition 2.1.2. Let X be a RV with values in R. Then X is simple if and only if it is a lin-
ear combination of indicators. Specifically, there exists n ∈ N, constants c1, . . . , cn ∈ R and events
A1, . . . , An so that X =

∑n
j=1 cj1Aj .

Here’s how to say that using algebraic notions: the vector space of simple functions is spanned by
indicators.

Proof. If X is simple, let {c1, . . . , cn} be the distinct elements in its image, and for j ∈ 1, . . . , n, let
Aj = X−1({cj}). Then X =

∑n
j=1 cj1Aj .

Conversely, suppose that X is of the given form. We will rearrange it in a way that will lead a
a linear combination of indicators of disjoint events. This will be then much simpler. We will not
write the details, but describe the algorithm. First we will look at all elements in ∪n

j=1Aj which are
exclusive to A1. This is A1 ∩ (∪j ̸=1Aj)

c, an event. Call it B1. Then all events exclusive to A2, . . . , An,
with respective resulting events B2, . . . , Bn. This step gives all elements in exactly one of the events.
We continue to all elements which are in exactly two of the events, starting with all events in A1 ∩A2

but not in any other pair. More complicated, but still an event (write it down). Call this B1,2, and
continue for all other pairs. Move to all elements in exactly three, etc. Generally for k ∈ 1, . . . , n, and
1 ≤ i1 < i2 < · · · < ik, Bi1,...,ik is the set of all elements which are in Ai1 ∩ · · · ∩ Aik but in no other
intersection of the Aj ’s. If you’re following B1,...,n is the elements in all events, namely ∩n

j=1Aj . Now
by construction all the B’s are disjoint and their union is ∪n

j=1Aj . On each such event, say Bi1,i2,...,ik ,
the value of X is ci1 + · · ·+ cik . Thus, the pre-image of any set is a union (possibly empty) of the B’s,
an event.

We moved from indicators to simple functions by taking linear combinations. We now introduce
new operations that allow to generated even more (and eventually all) RVs:

Proposition 2.1.3. Let X1, X2, . . . be RVs. Then supn Xn is in RV.

Proof. {supn Xn > b} = ∪n{Xn > b}.

Proposition 2.1.4. Let X be a RV with values in R and f : R → R continuous. Then f(X) is a RV.
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Proposition 2.1.5.

{ω : f(X(ω)) ≤ b} = {ω : X(ω) ∈ f−1((−∞, b])) = X−1(f−1(−∞, b])).

Because f is continuous the pre-image f−1((−∞, b]) of the closed set (−∞, b] is closed, hence a Borel
set, and because X is a RV, the pre-image of that set is an event.

Therefore, if X is a RV, so are all polynomials of X, sin(X), eX , etc. Well, we can’t stop here. We
need some basic algebraic operations such as sums, products, etc. The idea is pretty much the same,
but a little more involved.

Proposition 2.1.6. Let X,Y be real-valued RVs, and let f : R2 → R be continuous. Then f(X,Y ) is
a RV.

Proof. What do we need to show? As mentioned earlier we can replace the weak inequality with
the strict ineequality, and show that {f(X,Y ) < b} = {ω : (X,Y )(ω) ∈ f−1((−∞, b))} is an event
for every b ∈ R. Because f is continuous, f−1((−∞, b)) is open in R2. To complete the proof it is
enough to show that if U is open in R2, then {ω : (X,Y )(ω) ∈ U} is an event. Any open set in R2 is
necessarily a countable union of sets of the form (a, b)× (c, d). Because pre-images commute with set
operations, the pre-image of U under the function ω → (X,Y )(ω) a countable union of events of the
form X−1((a, b)) ∩ Y −1((c, b)), therefore an event.

We gathered enough results to prove a theorem that states exactly what we said in words earlier.
It’s easy but it’s very important. We first present some notation. Let X be any RV. Write X+ for the
random variable max(X, 0) and X− for the random variable (−X)+ = −min(X, 0). Why both are
RVs? Because each is a continuous function of the RV X. Moreover, X+ ≥ 0, X− ≥ 0, X+X− = 0 and
X = X+ −X−. Or: X is a difference of two nonnegative RVs, with the property that their product is
zero. Here’s our result:

Theorem 2.1.1. Let X be a nonnegative RV. Then there exists a sequence (φn : n ∈ N) of nonegative
simple RVs increasing to X. Moreover, for every M > 0, the convergence is uniform on {X < M}.

Proof. Define

φn(ω) := n1{X≥n} +

n2n∑
k=0

k2−n1{X∈[k2−n,(k+1)2−n)}.

Simply said: φn(ω) is the largest dyadic number with denominator expressible as 2−n if ≤ X(ω) or n
according to whether X ≤ n or X > n. Then φn is simple, because it is a RV and its image is finite.
It is non-decreasing (you check), and if X(ω) < M , then for n > M we have 0 ≤ X −φn ≤ 2−n, hence
the claimed uniform convergence holds.

The pre-images of a RV form a σ-algebra:

Definition 2.1.3. 1. Let X be a RV. The σ-algebra generated by X, σ(X), is defined as

σ(X) := {X−1(B) : B Borel}.

2. Let I be a set of indices and (Xi : i ∈ I) be RVs. The σ-algebra generated by (Xi : i ∈ I),
σ(Xi : i ∈ I) is the σ-algebra generated by all events in (σ(Xi) : i ∈ I).

In words, σ(X) is the smallest σ-algebra with respect to which X is measurable. For example if
A ∈ F , σ(1A) = {∅, A,Ac,Ω}, even if F has more elements. While we’re at it, let’s define

Definition 2.1.4. Let (Xn : n ∈ N) be a sequence of RVs. The sequence is called independent if the
corresponding σ-algebras (σ(Xn) : n ∈ N) are independent.

Example 2.1.1. Let (Ω,F) be the infinite coin tossing space of Example 1.1.1 and here denoted by
F . Recall the coordinate mappings: for n ∈ N, let Xn : Ω → {0, 1} be defined as Xn(ω) = ωn, the
value of the n-th coin toss.

• Note that σ(Xn) is a cylinder event, and therefore Xn is a RV. In particular, σ(Xn : n ∈ N) ⊆ F .
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• Conversely, every cylinder is in σ(Xn : n ∈ N), and therefore F ⊆ σ(Xn : n ∈ N).

Conclusion: F is the σ-algebra generated by the coordinate mappings. Let’s look at some examples of
new RVs we can form:

1. For each n ∈ N, the partial sum Sn = X1 + · · ·+Xn is a RV, as a finite sum of RVs, and so is
Sn/n, as a continuous function of Sn (multiply it by the constant 1/n).

2. lim supSn/n is also a random variable. Why? It is supn infk≥n
Sk

k

3. Also, let T := inf{n : Xn = 1}, the index of the first appearance of 1 (by convention, inf ∅ = ∞).
This is a RV. Why? For every b ∈ R, {T > b} = ∪n≤b{Xn = 0}, a finite intersection of events.

Moreover, the RVs (Xn : n ∈ N) are independent. This is because for each n ∈ N, σ(Xn) is Fn from
Example 1.4.3, and those are independent by construction.

Exercise 2.1.1. Continue the example. Prove that all of the following are RVs:

1. For k ∈ N , the k-th appearance of 1 or ∞ if 1 appears less than k times.

2.
∑∞

n=1 2
−nXn.

Exercise 2.1.2. Let Sn be as in Example 2.1.1. Consider the RV X := lim supn→∞ Sn/n, For n ∈ N,
let Fn = σ(Xn), and let T be the corresponding Tail σ-algebra, Definition 1.4.3.

1. Show that σ(X) ⊆ T .

2. Can you find an event in T which is not in σ(X)?

Proposition 2.1.7. Let (Xn : n ∈ N) be independent and let (fn : n ∈ N) be Borel measurable
functions from R to R. Then the sequence of RVs (fn(Xn) : n ∈ N) is independent.

Proof. For any n ∈ N and Borel set B, we have

{fn(Xn) ∈ B} = {Xn ∈ f−1
n (B)} ∈ σ(Xn).

Therefore σ(fn(Xn)) ⊂ σ(Xn), and the result follows from the definition of independent σ-algebras.

2.2 Lebesgue Integral and the Expectation

The expectation is the mathematical notion generalizing arithmetic averages. The Lebesgue integral is
the tool through which we define expectation. Nearly all areas of mathematical analysis use Lebesgue
integration, probability is just one. Lebesgue integration is more general than Riemann integration
(not restricted to Euclidean space), and provides a much more robust structure (limit theorems). In
this section we introduce and present the basic properties of the Lebesgue integral with respect to a
(general - not restricted to probability) measure.

Throughout this section we fix a measure space (Ω,F , µ).

2.2.1 Construction of the Integral

We define the Lebesgue integral of a RV X with respect to µ in three steps. Recall that if X is a RV,
then its positive partX+ and negative partX− are, respectively, the nonnegative RVsX+ := max(X, 0)
and X− := max(−X, 0). We have X+X− = 0 and X = X+ −X−.

Definition 2.2.1. 1. Let X be a simple RV. The integral of X, denoted by
∫
Xdµ, is defined as∑

0̸=k∈X(Ω)

kµ(X = k),

provided the sum is well-defined (no ∞−∞), even if infinite.
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2. Let X be a nonnegative RV. The integral of X, denoted by
∫
Xdµ, is defined as

sup
φ

∫
φdµ,

where the supremum is taken over all nonnegative simple RVs φ satisfying φ ≤ X.

3. Let X be a RV. The integral of X, denoted by
∫
Xdµ, is defined as

∫
X+dµ−

∫
X−dµ, provided

at least one of the integrals is finite. If both integrals are finite, then we say that X is integrable,
also denoted by X ∈ L1(µ).

If µ is a probability measure, we often write E[X] for
∫
Xdµ and refer to the integral as the

expectation of X (under µ).

If A ∈ F we write
∫
A
Xdµ for

∫
X1Adµ, the integral of X on (or over) A, and if µ is a probability

measure, we will often write E[X,A] for the same thing.
Note that if µ is a finite measure (µ(Ω) < ∞) - which includes all probability measures - then the

integral of any simple RV is always well-defined, and that the expectation of a simple RV is weighted
average of the values X, with the weights being the probabilities. This simple definition which relies
on the notion of a measure and is not specific to any particular space (like Rn) leads to a rich and
complete theory of integration.

Proposition 2.2.1. Let X be a RV. Then

1. X is integrable if and only if
∫
|X|dµ < ∞.

2. (triangle inequality) If X is integrable, then |
∫
Xdµ| ≤

∫
|X|dµ.

Exercise 2.2.1. Prove the proposition.

Let’s conisder some examples.

Example 2.2.1. Consider the measure δ0 on the Borel subsets of R. Let X be any simple function.
Then ∫

Xdδ0 =
∑

0 ̸=k∈X(R)

kδ0(X = k).

Now δ0(A) = 1 if 0 ∈ A and zero otherwise and is otherwise = 0. There is at most one k ̸= 0 in the
image of X whose preimage {X = k} contains 0, and for such k, kδ0(X = k) = X(0)1. For all other
k’s kδ(X = k) = k ∗0 = 0. Thus,

∫
Xdδ0 = X(0). Since this is true for all simple functions, by taking

the limits in the construction, it holds for all RVs X.

Example 2.2.2. Let Ω be finite, F the power set and µ any measure. For ω ∈ Ω, write µω for µ({ω}).
Then ∫

Xdµ =
∑
k ̸=0

X(ω)µ(X = k)

=
∑
ω∈Ω

µωX(ω),

a weighted sum of the X(ω)’s.

Let’s take this a little further:

Example 2.2.3. Let Ω = N, F the power set and µ the counting measure: µ(A) := |A|, the number
of elements in A. Any function X : N → R is a RV (pre-image of any set is in F , because the latter
is the power set).

Let X be a nonnegative simple function, and let’s assume that the nonzero elements in the image of
X are 0 < c1 < c2 < · · · < cn. By constrcution, µ(X = cj) = |{ω : X(ω) = cj}|, number of times cj is
repeated in the image of X. Then either all cj’s are repeated finitely many times, or at least one of them
is repeated infinitely many times. In either case a simple argument shows that

∫
Xdµ =

∑∞
ω=1 X(ω).

Therefore in this context we can think of X as a nonnegative sequence (any function from N to R is a
sequence) X(1), X(2), . . . , and its integral as the corresponding series

∑∞
ω=1 X(ω).

When thinking of a general RV X (or sequence in this setting), then the proposition tells us that X
is integrable if and only if the corresponding series converges absolutely. To a large extent, the theory
of Lebesgue integration generalizes the notion of absolute summability.
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Exercise 2.2.2. Let (cn : n ∈ N) be a nonnegative sequence. For any subset A of N, let µ(A) :=∑
n∈A cn (by convention, a sum over an empty set is zero).

1. Prove that µ is a measure on the power set of N.

2. Show that X : N → R is integrable with respect to µ if and only if
∑∞

n=1 cn|X(n)| < ∞ and in
this case

∫
Xdµ =

∑∞
n=1 cnX(n).

2.3 Monotone Convergence and Linearity

In this section we present the two most important features of the Lebesgue integral: continuity (in a
specific setting, but not too restrictive) and linearity.

The following theorem is probably the key justification for the Lebesgue integral. It is called
Lebesgue’s Monotone Convergence Theorem (MCT).

Theorem 2.3.1 (Monotone Convergence Theorem, MCT). Let µ be a measure. Let 0 ≤ X1 ≤ X2 ≤
. . . be a sequence of RVs. Then

lim
n→∞

∫
Xndµ =

∫
lim
n→∞

Xndµ.

In words, the integral we have defined (expectation of a RV) commutes with monotone limits (of
nonnegative RVs). This is not true for Riemann integrals. This can be viewed as continuity result:
integral of the limit (of an increasing nonnegative sequence) is the limit of the integrals. And as you’ll
see from the proof, the theorem is nothing but an extension of continuity from below of measures,
extending the notion from indicators of increasing events to general sequences of nonndecreasing RVs.

Let’s highlight one difference from the Riemann integral. If (qn : n ∈ N) is a sequence containing all
rationals in [0, 1] and fn(x) =

∑
k≤n 1{qn}(x), then fn ↗ 1Q∩[0,1], and fn is Riemann integrable with a

Riemann integral
∫ 1

0
fn(x)dx = 0. Since fn is a simple nonnegative function, the Lebesgue integral of

fn with respect to the Lebesgue measure,
∫
fndm exists and is = 0. Now let’s look at limn→∞ fn, AKA

the Dirichlet function. This is the first example we all saw of a nonnegative bounded function which
is not Riemann integrable, so we can’t take the limit inside the integral... But from the perspective
of the Lebesgue integral? No problem. An easy calculation shows that the

∫
limn→∞ fndm = 0, as

expected (or we just apply the theorem).

Proof of Theorem 2.3.1. Let X = limn→∞ Xn. Clearly
∫
Xndµ ≤

∫
Xdµ. Let Y be a simple nonneg-

ative RV which is ≤ X. Let c1 < c2 < · · · < cn be the nonzero elements in the image of Y . Then
Y =

∑k
j=1 cj1Aj

, where Aj = {Y = cj}, j = 1, . . . , n. Fix ϵ > 0. The fact thatX(ω) = limn→∞ Xn(ω)
implies that for every ω ∈ Ω, Xn(ω) ≥ (1−ϵ)Y for sufficiently large n. Let N = N(ϵ, ω) be the smallest
integer that Xn(ω) ≥ (1− ϵ)Y . Then N is a RV (why?). Now∫

Xndµ ≥
∫

Xn1{n>N}dµ ≥ (1− ϵ)

∫
Y 1{n>N}dµ

≥ (1− ϵ)

n∑
j=1

cjµ(Aj ∩ {n > N}).

Now Aj ∩{n > N} ↑
n→∞

Aj , and therefore using the continuity of measures with respect to increasing

sequences, the measures on the righthand side increase to the measure of Aj . Bottom line,

lim
n→∞

∫
Xndµ ≥ (1− ϵ)

∫
Y dµ.

Note that the limit on the lefthand side exists because n →
∫
Xndµ is a nondecreasing sequence. By

definition the integral of a nonnegative RV, we conclude the limn→∞
∫
Xndµ ≥ (1 − ϵ)

∫
Xdµ. Since

ϵ > 0 is arbitrary, our work is done.

Want to see an example? Here’s one.
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Example 2.3.1. Recall that for every |x| < 1,

ln(1 + x) =

∞∑
k=1

(−1)k+1x
k

k
.

The radius of convergence of the power series on the right is 1, and it clearly diverges at x = −1. What
about x = 1? Well, the series converges due to the alternating sequence test, but is its value equal to
ln(1+1)? For that we need to show that as x ↗ 1, the values of the series converge to the value of the
series at X = 1.

Let’s go. First let’s get rid of the alternating signs by combining every two successive terms odd k
followed by even k into one:

x2ω−1

2ω − 1
− x2ω

2ω
= x2ω−1

(
1

2ω − 1
− x

2ω

)
.

Note that because |x| < 1, each of these terms is nonnegative. Also note (differentiate the lefthand
side) that each of these terms increases as a function of x.

Now left find a nice measure space. We will take Ω = N, and equip it with the counting measure.
As discussed in Example 2.2.3 the integral of nonnegative X is

∫
Xdµ =

∑∞
ω=1 X(ω). Next, let

(rn : n ∈ N) be a sequence in (0, 1) strictly increasing to 1. For each n ∈ N, let Xn(ω) :=
r2ω−1
n

2ω−1 − r2ωn
2n

(remember that ω is a natural number). From the discussion above 0 ≤ X1 ≤ X2 ≤ . . . and the integral

of Xn is
∫
Xndµ =

∑∞
ω=1 Xn(ω) =

∑∞
ω=1

r2ω−1
n

2ω−1 − r2ωn
2ω . From the discussion above, this is ln(1 + rn).

As limn→∞ Xn(ω) =
1

2ω−1 − 1
2ω , the MCT gives us

lim
n→∞

ln(1 + rn) = lim
n→∞

∫
Xndµ =

∫
lim
n→∞

Xndµ =

∞∑
ω=1

1

2ω − 1
− 1

2ω
=

∞∑
k=1

(−1)k+1

k
.

Because the function x → ln(1 + x) is continuous at x = 1, the lefthand side is equal to ln 2.
Nice, right?

Let’s consider another example.

Example 2.3.2. Let (Ω,F , µ) be a measure space and let X be a nonnegative RV. Let In =
∫
n ln(1+

X/n)dµ. Let’s find limn→∞ In. First, recall from calculus (if not, prove), that for every c > 0, the
sequence n → (1+ c

n )
n increases as n → ∞ to ec. For n ∈ N, define the RV Xn := ln(1+X/n)n. Then

0 ≤ X1 ≤ X2 . . . , and limn→∞ Xn = ln eX = X. Therefore, the MCT guarantees that limn→∞ In =∫
Xdµ.

The next result establishes monotonicity and linearity of the integral, both extremely important in
all that will follow.

Theorem 2.3.2. 1. If X and Y are RVs with X ≤ Y and Y integrable, then
∫
Xdµ ≤

∫
Y dµ.

2. If X is integrable and c ∈ R, then
∫
cXdµ = c

∫
Xdµ.

3. If X and Y are integrable, then X + Y is integrable, and∫
X + Y dµ =

∫
Xdµ+

∫
Y dµ (2.3.1)

Proof of part 1. Clearly X ≤ Y and so if X ≥ 0, Y ≥ 0. This leads us to X+ = X1X≥0 ≤ Y 1X≥0 ≤
Y 1Y≥0 = Y+, therefore

∫
X+dµ ≤

∫
Y+dµ < ∞. Similarly, −Y− = Y 1Y≤0 ≥ X1Y≤0 ≥ X1X≤0 =

−X−, that is Y− ≤ X−. We have
∫
Xdµ =

∫
X+dµ−

∫
X−dµ ≤

∫
Y+dµ−

∫
Y−dµ =

∫
Y dµ.

We leave part 2 as an exercise.
Before we prove the last part, we need the following lemma.

Lemma 2.3.1. Let X and Y be RVs. Then (2.3.1) holds in each of the following cases:

1. X,Y are both simple and integrable.
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2. X,Y are both nonnegative.

Proof. Let’s first assume that X =
∑n

j=1 cj1Aj
with Aj ’s disjoint and that Y is of the form c1A for

some c ̸= 0. Clearly,

X + Y =

n∑
j=1

(cj + c)1Aj∩A +

n∑
j=1

cj1Aj−A + c1A−∪n
j=1Aj

.

Note that all events are disjoint and therefore, the definition of the integral of a simple function gives∫
X + Y dµ =

n∑
j=1

(cj + c)µ(Aj ∩A) +

n∑
j=1

cjµ(Aj −A) + cµ(A− ∪n
j=1Aj).

(we may need to consider the case c = cj for some j separately, but we’ll omit the details).
Separating the first sum we obtain

n∑
j=1

cjµ(Aj) + cµ(A) =

∫
X + Y dµ.

Iterating this, we have that the expectation of the sum of two simple integrable RVs is the sum of their
expectations. To obtain the conlcusion for nonnegative RVs, apply the MCT.

Proof of Theorem 2.3.2 part 3. First, |X + Y | is a nonnegative RV, and by the triangle inequality,
|X + Y | ≤ |X| + |Y |. The lemma gives

∫
|X| + |Y |dµ =

∫
|X|dµ +

∫
|Y |dµ < ∞, and therefore

X + Y is integrable with
∫
|X + Y |dµ ≤

∫
|X|dµ +

∫
|Y |dµ. Let Z = X + Y . We can rewrite

this equality as equality on sums of nonnegative RVs: Z+ + X− + Y− = Z− + X+ + Y+. Therefore∫
Z+ +X− + Y−dµ =

∫
Z+ +X+ + Y+dµ. But since each side is expectation of a sum of nonnegative

RVs we have the equality
∫
Z+dµ −

∫
Z−dµ =

∫
X+dµ −

∫
X−dµ +

∫
Y+dµ −

∫
Y−dµ, which, by

definition, reads
∫
Z = dµ

∫
Xdµ+

∫
Y dµ, the desired outcome.

If you followed the proof you’d notice that we also proved the triangle inequality:

Corollary 2.3.1. Let X and Y be RVs. Then∫
|X + Y |dµ ≤

∫
|X|dµ+

∫
|Y |dµ.

We close this section with a very important corollary of linearity, domain additivity of the integral.

Corollary 2.3.2. Let X be a nonnegative or intgerable RV. Let A be an event. Then
∫
Xdµ =∫

A
Xdµ+

∫
Ac Xdµ.

Exercise 2.3.1. Use the definition of the integral to show that if X is any RV and N is an event with
µ(N) = 0, then the integral of X over N is defined and is equal to zero.

2.4 Fatou’s Lemma and Dominated Convergence

While we’re at it, let’s prove a few other useful results. First, we can relax the monotonity assumption
in the MCT at a price of an equality:

Theorem 2.4.1 (Fatou’s Lemma). Let (Xn : n ∈ N) be nonnegative RVs. Then lim infn→∞
∫
Xndµ ≥∫

lim infXndµ.

Proof. Let Yn = infk≥n Xk. Clearly, Yn ≤ Xn, so
∫
Xndµ ≥

∫
Yndµ. Next observe that 0 ≤ Y1 ≤ Y2 ≤

. . . , with limn→∞ Yn = lim infXn, and by taking limits we have

lim inf
n→∞

∫
Xndµ ≥ lim

n→∞

∫
Yndµ

MCT
=

∫
lim
n→∞

Yndµ =

∫
lim infXndµ.
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Exercise 2.4.1. We proved Fatou’s lemma from the MCT. Show that the reverse implication also
holds: Fatou’s lemma implies the Monotone Convergence Theorem.

The last two results in this batch are the dominated and bounded convergence theorems, both
consequences of the above, and both very useful.

Before we continue present some language that will be used very often. A statement about RVs in
our measure space is said to hold almost everywhere (abbreviated a.e.) if it holds possibly except on a
set whose measure under µ is zero. For example, the Dirichlet function (indicator of rationals in [0, 1])
is equal to 0 a.e. with respect to the Lebesgue measure. When µ is a probability measure, we will
use “almost surely” (abbreviated a.s.) for “almost everywhere”. Due to Corollary 2.3.2 and Exercise
2.3.1, for integration purposes, statements that hold a.e. should be viewed as holding everywhere. We
will demonstrate this in the proof of the next theorem.

Theorem 2.4.2 (Dominated Convergence Theorem, DCT). Let (Xn : n ∈ N), X and Y be RVs, with Y
integrable and supn |Xn| ≤ Y a.e. Suppose that limn→∞ Xn = X a.e. Then limn→∞

∫
|Xn−X|dµ = 0,

and in particular, X is integrable and limn→∞
∫
Xndµ =

∫
Xdµ.

Example 2.4.1. Let Z be an integrable RV. We show that limn→∞
∫
|Z|>n

|Z|dµ = 0.

We apply the DCT with Xn = |Z|1{|Z|>n} and let Y = |Z|. Clearly, X := limn→∞ Xn =
|Z|1{|Z|=∞}. Now X is integrable, but equal to ∞1{|Z|=∞}, so the construction of the integral of
a nonnegative RV garantees that

∫
Xdµ = 0. Therefore the claim follows from the DCT.

Since in a probability space any constant function is also integrable, we have

Corollary 2.4.1 (Bounded Convergence Theorem, BCT). Suppose that µ is a finite measure. Let
(Xn ∈ N), X be RVs and M a positive real number satisfying supn |Xn| ≤ M , a.e. and limn→∞ Xn = X
a.e. Then the conclusions of the DCT hold.

The proof of the Corollary from the DCT is immediate, because if µ is finite, any constant function
is integrable.

Proof of Theorem 2.4.2. This uses Fatou’s lemma and a little trick. Clearly |Xn−X| ≤ |Xn|+|X| ≤ 2Y
a.e. Therefore, the sequence 2Y − |Xn − X| is nonnegative a.e. Let N be the event on which it is
negative (which may be empty). Then µ(N) = 0. Fatou’s lemma gives

lim inf
n→∞

∫
Nc

2Y − |Xn −X|dµ ≥
∫
Nc

2Y dµ.

and since the integral of any RV on N is zero (exercise 2.3.1), each of the integrals above is equal to
the integral of the function (over the entire sample space, not just over N c). In the sequel (including
the next paragraph) we skip the intermediate step of integrating over null sets where an a.e. statement
fails to hold.

Use the linearity of the expectation to conclude that the lefthand side is
∫
2Y dµ−lim supn→∞

∫
|Xn−

X|dµ, and therefore we obtain lim sup
∫
|Xn−X|dµ ≤ 0. Next, note that by Fatou’s lemma

∫
|X|dµ ≤

lim infn→∞
∫
|Xn|dµ ≤

∫
Y dµ < ∞. Therefore, X is integrable, and we have

|
∫

Xndµ−
∫

Xdµ| = |
∫

Xn −Xdµ| ≤
∫

|Xn −X|dµ,

and the assertion follows from the first.

2.5 Connection with Riemann Integratrion

Though the new notion of the Lebesgue integral is more abstract than the Riemann integral, both are
intricately related. Though it is easy to confuse: the Lebesgue integral is always with respect to a
measure. The Lebesgue measure is a special measure on R.

Let us now consider the measure space (R,B(R)). Fix a bounded interval [a, b]. Any step function
ϕ on [a, b] is a simple function, and its Riemann integral coincides with our definition of the Lebesgue
integral of the simple function

∫
ϕdm with respect to the Lebesgue measure. Since Riemann integra-

bility is obtained through approximations of integrals of step functions (lower and upper Darbeaux
sums), the following result is not surprising, and its proof is not hard.
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Theorem 2.5.1. Let a < b be real numbers and f : [a, b] → R. Then

1. f is Riemann integrable if and only if f is bounded and the set of points where f is not continuous
has Lebesgue measure 0.

2. If f is Riemann integrable on [a, b], then it is Lebesgue integrable with respect to the Lebesgue mea-

sure and its Lebesgue integral on [a, b],
∫
[a,b]

fdm coincides with its Riemann integral
∫ b

a
f(t)dt.

Corollary 2.5.1. Suppose that f ≥ 0 is Riemann integrable on R. Then it is Lebegsue integrable and∫
f(t)dt =

∫
fdm.

Proof. Let fn(t) := 1[−n,n](t)f(t). Then (fn : n ∈ N) is a sequence of nonnegative functions increasing
to f . Since f is Riemann integrable on any bounded interval, it is Riemann integrable on [−n, n], and
therefore

∫ n

−n
f(t)dt =

∫
[−n,n]

fdm =
∫
fndm. Now take n → ∞. The lefthand side tends to

∫
f(t)dt

and the MCT gives that the righthand side tends to
∫
fdm.

Example 2.5.1. Let’s find limn→∞
∫ 1

0
nxn

sin x+x3/2 dx.
We are going to apply the DCT utilizing the theorem. First let’s do some manipulation of the

Riemann integral:

∫ 1

0

nxn

sinx+ x3/2
dx =

∫ 1

0

nxn−1

sin x
x + x1/2

dx

t=xn

=

∫ 1

0

1
sin t1/n

t1/n
+ t1/(2n)

dt.

For n ∈ N, let fn(t) := 1[0,1](t)
1

sin t1/n

t1/n
+t1/(2n)

. This is a Riemann integrable on [0, 1]. Let c be the

infimum of the function sin x
x on (0, 1]. Then c > 0, and we clearly have 0 ≤ fn(t) ≤ 1[0,1](t)

1
c . Also

fn(t) → 1[0,1](t)
1

sin 1+1 m-a.e. (the limit exists at all t ̸= 0), and the DCT imlies limn→∞
∫
fndµ =∫

[0,1]
1

sin 1+1dm. By the theorem, the lefthand side is limn→∞
∫ 1

0
nxn

sin x+x3/2 , and the righthand side is∫ 1

0
1

sin 1+1dt =
1

sin 1+1 .

The next result allows to calculate Lebesgue integrals (not necessarily with respect to the Lebesgue
measure!) through improper Riemann integrals. In what follows we fix a measure space (Ω,F , µ).

Theorem 2.5.2. Let Z be a nonnegative RV. Then∫
Zdµ =

∫ ∞

0

µ(Z ≥ t)dt.

We note since t → µ(Z ≥ t) is non-increasing, on the interval it is finite, it is continuous possibly
expect for a countable number of jumps. Any countable subset of R has Lebesgue measure zero, and
therefore on any bounded subinterval of this interval, the function is Riemann integrable.

Here’s a sketch of the proof. The statement is valid for simple Z by direct computation, and
the result follows by approximating Z by simple functions from below and applying the MCT to the
righthand side. As an immediate corollary we have

Corollary 2.5.2. The integral of Z (with respect to µ is defined if and only if
∫∞
0

µ(Z ≥ t)dt < ∞ or∫∞
0

µ(Z ≤ t)dt < ∞ and in this case∫
Zdµ =

∫ ∞

0

µ(Z ≥ t)dt−
∫ ∞

0

µ(Z ≤ t)dt.

Example 2.5.2. Let’s revisit some calculus. Suppose we want to calculate
∫ 1

0
x1/ndx, where n is any

integer. Of course, we already know this is equal to n
n+1 .

Let’s use the results of this section to obtain this value (we will assume we can calculate the Riemann
integral of a polynomial). Our integral is

∫
[0,1]

x1/ndm =
∫
Zdm, where Z = 1[0,1](x)x

1/n. Now for

t ∈ (0, 1]
{Z ≥ t} = {x ∈ (0, 1) : x1/n ≥ t} = {x ∈ (0, 1) : x ≥ tn}.
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The Lebesgue measure of this set is 1− tn. For t > 1, {Z ≥ t} = ∅. Therefore,∫ ∞

0

m(Z ≥ t)dt =

∫ 1

0

m(Z ≥ t) =

∫ 1

0

(1− tn)dt.

The righthand side is 1− 1
n+1 = n

n+1 .

2.6 Distributions of RVs

In probability theory, a distribution is synonymous with a probability measure, often with some distin-
guishing specific characteristics. In this section we will review some common probability distributions.

We assume that (Ω,F , µ) is a measure space.

Definition 2.6.1. Let f be a nonnegative RV. The measure with density f (WRT to µ), which we
denote by µf , is defined as

µf (A) :=

∫
A

fdµ, A ∈ F .

Exercise 2.6.1. Prove that µf defined above is indeed a measure.

Note that if
∫
fdµ = 1, then µf is a probability measure.

Proposition 2.6.1. Let Z be a RV. Then Z is integrable with respect to µf if and only if
∫
|Z|fdµ < ∞.

In this case ∫
Zdµf =

∫
Zfdµ.

Exercise 2.6.2. Prove the proposition.

The following two examples represent some common probability distributions as probability mea-
sures with density with respect to the Lebesgue measure on R or the counting measure on Z.

Example 2.6.1. A lot of common probability measures are obtained through this procedure with µ
takes as the Lebesgue measure on R and f a Riemann integrable function satisfying

∫∞
−∞ f(x)dx = 1

(which - as we saw earlier - implies f is Lebesgue integrable with respect to m and
∫
fdm = 1):

Parameter(s) f(x) Notation Description

λ > 0 1[0,∞)(x)λe
−λx Exp(λ) Exponential with parameter λ

µ ∈ R, σ2 > 0 e−(x−µ)2/(2σ2)
√
2πσ2

N(µ, σ2) Normal (Gaussian) with mean µ and variance σ2

−∞ < a < b < ∞ 1[a,b](x)

b−a U [a, b] Uniform on [a, b]

Example 2.6.2. Let µ be the counting measure on the nonnegative integers, Z+ = {0, 1, 2, . . . }. Here
is a list of some common probability distributions of the form µf for f ≥ 0 with

∫
fdµ = 1. Recall that∫

fdµ =
∑∞

n=0 f(n).

Parameter(s) f(x) Notation Description

p ∈ (0, 1)


1− p x = 0

p x = 1

0 otherwise

Bern(p) Bernoulli with probabilityp.

n ∈ N, p ∈ (0, 1)

{(
n
x

)
px(1− p)n−x x ∈ {0, 1, . . . , n}

0 otherwise
Bin(n, p) Binomial with parameters n and p

p ∈ (0, 1)

{
(1− p)x−1p x ∈ N
0 otherwise

Geom(p) Geometric with parameter p

λ > 0 e−λ λx

x! Pois(λ) Poisson with parameter λ
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2.7 RVs and their Distributions

In this section (Ω,F , P ) is a probability space.

Definition 2.7.1. Let X be a RV taking values in R.

1. The distribution of X is a Borel probability measure on R given by the push-forward measure
PX . Specifically:

PX(B) = P (X ∈ B), B ∈ B(R).

2. The Cumulative Distribution Function (CDF) of X, FX is defined as

FX(x) := PX((−∞, x]) = P (X ≤ x), x ∈ R.

Why is this so important? Because no matter what the underlying probability measure is the
distribution is always a Borel probability measure. That is: a probability measure on (R,B(R)).

We will say that X has distribution “blah” if its distribution PX is “blah”. Recall, for example, the
exponential distribution with parameter λ from Example 2.6.1. We will say that X is exponentially
distributed with parameter λ if PX is the exponential distribution with parameter λ, and we will
express this statement in symbols by writing X ∼ Exp(λ). Another example: X ∼ Bin(n, p) means
that the distribution of X Binomial with parameters n and p, a distribution we defined in Example
2.6.2.

Example 2.7.1. Consider the infinite product measure with p = 1
2 . Let X be the first coordinate

mapping. So X ∼ Bern( 12 ).
Now consider the Lebesgue measure restricted to [0, 1] and let Y be the indicator of the interval

[ 14 ,
3
4 ]. Then again Y ∼ Bern( 12 ).
Though the two RVs live in different probability spaces, their distributions are the same.

Proposition 2.7.1. Let X and FX be as in Definition 2.7.1. Then

1. FX is non-decreasing, right continuous, limx→−∞ FX(x) = 0, and limx→∞ FX(x) = 1.

2. P (X ∈ (a, b)) = FX(b−)−FX(a) and P (X = a) = FX(a)−FX(a−) (FX(x−) := limy↑x FX(x)).

Exercise 2.7.1. Prove the proposition.

As an application of the Π− Λ theorem we have the following:

Proposition 2.7.2. Let X be a RV taking values in R. Then its distribution PX is determined by its
CDF FX .

If P is any Borel probability measure on R and X is the identity mapping, then PX = P . Equiv-
alently, X, the identity, has distribution P , and in this case FX(x) = P ((−∞, x]). We also have the
following:

Proposition 2.7.3. Let F : R → [0, 1] satisfy all conditions listed in 2.7.1-1. Then there exists a
unique Borel probability measure P such that P (X ≤ x) = F (x) for all x ∈ R.

Distributions of RVs are categorized into three groups:

Definition 2.7.2. Let FX be the CDF of some RV X. Then the distribution of X is

1. Continuous if FX is continuous, and absolutely continuous if PX has a density with respect to
the Lebesgue measure.

2. Discrete if there exists a countable set K such that P (X ∈ K) = 1, equivalently, FX increases
only through jumps.

3. Mixed, otherwise.
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Since FX is right continuous at all points and has left limits at every point, it is continuous at a
point x if and only if P (X = x) = FX(x)− FX(x−) = 0. Thus the distribution of X is continuous if
and only if P (X = x) = 0 for all x ∈ R. As for the discrete case, we have some countable K such that
P (X ∈ K) = 1, or

∑
k∈K FX(k) − FX(k−) = 1, which is the same as saying that all the increase of

FX from 0 to 1 is through jumps at the elements in K.
All distributions in Example 2.6.1 are continuous and all distributions in Example 2.6.2 are discrete.

Here is an example of a mixed distribution.

Example 2.7.2. Suppose that X ∼ U [0, 1]. Let Y = max(X, 1
2 ). Then P (Y = 1

2 ) =
1
2 , so Y is not

continuous. But for all x ̸= 1
2 , P (Y = y) = 0, so Y is not discrete. Therefore Y is mixed. What is

the CDF of Y ?

FY (y) =

{
0 y < 1

2

min(y, 1) y ≥ 1
2

We continue to some calculations with distributions.

Example 2.7.3. Suppose that X ∼ N(0, 1). We will show that for µ ∈ R and σ > 0, the RV
Y := σX + µ satisfies Y ∼ N(µ, σ2).

The distribution of X has density f(x) = e−x2/2
√
2π

with respect to the Lebesgue measure. Therefore

its CDF FX satisfies

FX(x) = P (X ≤ x) =

∫
(−∞,x]

fX(t)dm =

∫ x

−∞
fX(t)dt.

Now let’s express the CDF of Y , FY , in terms of the CDF of X. Why? Because the CDF determines
the distribution, and hope it is of the form we want.

FY (y) = P (σX + µ ≤ y)

= P (X ≤ y − µ

σ
)

=
1√
2π

∫ y−µ
σ

−∞
e−t2/2dt

x=σt+µ
=

1√
2πσ2

∫ y

−∞
e−(x−µ)2/(2σ2)dx

Therefore the CDF of Y is the same as the CDF of N(µ, σ2).

Suppose X is a RV and ϕ is nonnegative Borel measurable function and we want to calculate
E[ϕ(X)] =

∫
ϕ(X)dP . We do not need to work directly with P , but instead work with its distribution

which - we recall - is a Borel probability measure on R. This makes our life simpler!

Theorem 2.7.1. Let X be a RV and let ϕ : R → [0,∞) be Borel measurable. Then E[ϕ(X)] =∫
ϕ(x)dPX

Corollary 2.7.1. Suppose that X is a RV and ϕ : R → R is Borel measurable. Then ϕ(X) is integrable
if and only if E[|ϕ|(X)] < ∞ and in this case E[ϕ(X)] =

∫
ϕ(x)dPX .

Proof of Theorem 2.7.1. Use Theorem 2.5.2 to obtain:

• The lefthand side is equal to
∫∞
0

P (ϕ(X) ≥ t)dt.

• The righthand side is equal to
∫∞
0

PX({x ∈ R : ϕ(x) ≥ t})dt.

Now

PX({x ∈ R : ϕ(x) ≥ t}) = PX(ϕ−1([t,∞)] = P (X ∈ ϕ−1([t,∞)) = P (ϕ(X) ≥ t).

Thus the two Riemann integrals above are of the same function.
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Example 2.7.4. Suppose that X ∼ Exp(λ). Let’s find the expectation of X.
Since the distribution of X has density 1[0,∞)λe

−λx with respect to the Lebesgue measure, apply the
corollary with ϕ(x) = x, and use Proposition 2.6.1 to obtain

E[X] = λ

∫ ∞

0

xe−λxdx =
1

λ
,

where the last equality was obtained through integration byb parts.

Example 2.7.5. Let’s calculate the expectation of Y ∼ N(µ, σ2). Since we already know that this
distribution is the same as for Z := σX + µ where X ∈ N(0, 1), we will apply Proposition 2.6.1 to Z.
To obtain

E[Z] =

∫
σX + µfXdm = E[σX + µ] = σE[X] + µ.

Now

E[X] =

∫
xfX(x)dm =

∫ ∞

−∞
xfX(x)dx = 0,

because fX is symmetric.

2.8 Independent RVs

Definition 2.8.1. The sequence of RVs (Xn : n ∈ N) is independent if the corresponding sequence of
σ-algebras (σ(Xn) : n ∈ N) is independent.

Example 2.8.1. Consider the infinite coin tossing measure from Theorem 1.2.2, and let (Xn : n ∈ N)
be the coordinate mappings. Then by definition of the product measure this sequence is independent.

Corollary 2.8.1. Let (Xn : n ∈ N) be a sequence of RVs. Then the sequence is independent if
and only for any finite subsequence 1 ≤ i1 < i2 < · · · < in of indices and real numbers b1, . . . , bn
P (∩n

j=1{Xij ≤ bj}) =
∏n

j=1 P (Xij ≤ bj).

Proof. This is a corollary to Theorem 1.4.1. We omit details.

The next result states that independence is preserved under functions applied to RVs individually.

Corollary 2.8.2. Suppose that (Xn : n ∈ N) are independent. Let (fn : n ∈ N) be sequence of Borel
measurable functions. Then the RVs (fn(Xn) : n ∈ N) are independent.

Proof. For every borel set B and n ∈ N {fn(Xn) ∈ B} = {Xn ∈ f−1
n (B)} ∈ σ(Xn). Therefore,

σ(fn(Xn)) ⊆ σ(Xn)}, and the result follows from the definition of independent σ-algebras.

Theorem 2.8.1. Let (Xn : n ∈ N) be independent integrable RVs. Then for every n ∈ N, E[
∏n

j=1 Xj ] =∏n
j=1 E[Xj ].

Proof. We will prove the statement in two stages. First we show that if X and Y are independent and
integrable, then E[XY ] = E[X]E[Y ], and then we generalize through an inductive argument.

For the first step, we can assume without loss of generality first that X and Y are simple. Why?
Theorem 2.1.1 shows that for any nonnegative RV X (you complete the details for a general RV), for
each n ∈ N there is a Borel measurable function ϕn such that ϕn(X) is simple, |ϕn(X)| ≤ |X| and
limn→∞ ϕn(X) = X with the analogous statements for Y .

Then, assuming bothX and Y are simple, thenX =
∑

k∈X(Ω) k1{X=k} and Y =
∑

k′∈Y (Ω) k
′1{Y=k′}

with both sums over finite sets. Then

E[XY ] = E[
∑
k,k′

kk′1{X=k}∩{Y=k′}]

=
∑
k,k′

kk′P (X = k, Y = k′)

=
∑
k,k′

kk′P (X = k)P (Y = k′)

=
∑
k

kP (X = k)
∑
k′

k′P (Y = k′)

= E[X]E[Y ].
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In fact, the same argument shows that E[|XY |] = E[|X|]E[|Y |]. Through monotone convergence the
equality holds for all nonnegative X and Y . If X and Y are both integrable RVs, then this argument
gives E[|XY |] = E[|X|]E[|Y |], which in turn implies that XY is integrable. Also, the second corollary
states, X± are both independent of each of Y±. Write X = X+ − X− and Y = Y+ − Y−. Then
XY = (X+ − X−)(Y+ − Y−) = X+Y+ − X+Y− − X−Y+ + X+Y+. Each of the four summands is a
product of two independent RVs and is an integrable RV. Therefore,

E[XY ] = E[X+Y+]− E[X+Y−]− E[X−Y+] + E[X+Y+]

= E[X+]E[Y+]− E[X+]E[Y−]− E[X−]E[Y+] + E[X+]E[Y+]

= E[X]E[Y ].

It remains to expand the statement to finite products. We do it by induction, with the base case n = 2
already proved. We want to show that if X1, . . . , Xn, Xn+1 are indepenent and integrable, then so is
their product and its expectation is the product of the expectations. Let X =

∏n
j=1 Xj . Then by the

induction hypothesis X is integrable and E[X] =
∏n

j=1 E[Xj ]. Now by Theorem 1.4.2, we have that
σ(X1, . . . , Xn) and σ(Xn+1) are independent, so X and Xn+1 are independent integrable RVs so that
E[XXn+1] = E[X]E[Xn+1] =

∏n
j=1 E[Xj ].
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Chapter 3

Laws of Large Numbers

We know that probability spaces can be viewed as mathematical modeling of chance. To be more
precise, the set Ω consists of all outcomes in an experiment, and a probability measure weighs sets of
outcomes, those which we can observe, AKA events.

As you know from coin tossing, we cannot tell anything about the outcome of a single experiment,
but if we repeat it, some interesting patterns appear. To make the connection, we need some math-
ematical notion for “repeating” the experiment. Actually, we have already defined it. This notion is
already hidden in concepts we defined before including product spaces and independence, both repre-
senting different aspects of it. If we are looking repeat the experiment twice, then our natural sample
space is Ω × Ω, the set of all ordered pairs of the form (ω1, ω2), representing the outcome of the first
and the second. If we want an infinite sequence, like we did with the coin tossing, then we may want
to use an infinite product space ΩN, equivalently, the set of all functions from N → Ω. Since any finite
or infinite sequence of experiments can be viewed as one large experiment, we can simply assume that
our sample space is large enough to support what we’re interested in without providing a concrete
description. This may seem somewhat vague, but will be clearer soon. Now that we have this out of
our way, let’s ponder “repeating an experiment”. We basically want each of the experiments to be
such that observation of each has no impact on the observation of the others, and that all are identical
namely what we see in each is described by the same probability distribution. The mathematical
interpretation of the first is independence of the experiments and the second is all experiments having
identical distributions. To put this into a concrete setting, let’s simply assume that the outcome of
each experiment in out sequence is represented by some numerical value. The mathematical interpre-
tation of this is that we represent the outcome of the n-th experiment by a random variable, say Xn.
Going back to independence, we assume that the RVs in the sequence (Xn : n ∈ N) are independent.
Adding to this the identical distribution for each experiment, we obtain an IID sequence. The infinite
product measure and the sequence of coordinate mappings provide the simplest example of what we
have just described. However, we can also go in the reverse direction: any IID sequence (Xn : n ∈ N)
can and should be viewed as resulting from repeating a certain experiment infinitely many times,
independently, regardless of the underlying sample space.

This long introduction was necessary to explain the idea behind laws of large numbers. The key
idea is this: repeating an experiment a large number of times (e.g. tossing a coin) allows to reveal
the underlying distribution (e.g. the probability that a coin lands Heads). Technically this is done by
looking at the “time averages” or “empirical means” of the sequence of the experiments, that is RVs
of the form 1

N

∑N
n=1 Xn, which as N → ∞ tend (in some appropriate sense) the sample space average,

namely the expectation, E[X1]. At first sight, it may not seems as “revealing” the distribution, just
its expectation, but as we will see this is enough. A great deal of statistics is based on this type of
results: even if we do not know the distribution of something (proportion of left handed people in the
population), we can recover it by repeatedly sampling people independently. The empirical proportions
will get closer and closer to the answer.

We begin with some basic inequalities, a discussion on convergence of random series, the weak law
of large numbers and the strong law. We will close with applications.

35
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3.1 Markov’s & ChebyChev’s Inequalities

Very often expectations are more accessible than probabilities. For example, we can explicitly calcu-
late the expectation of many functions of the normal RVs, but (with one exception) there’s no closed
form formula for the probability a normal RV is larger than a certain real number... This is a typical
situation.

The most effective tools for getting bounds on probabilities are the Makrov inequality and is many
derivatives. It may seem too naive, but it can go pretty far.

Proposition 3.1.1 (Markov’s inequality). Let Z be a nonnegative RV. Then for z > 0,

zP (Z ≥ z) ≤ E[Z,Z ≥ z] ≤ E[Z].

The proof is a one-liner obtained by taking expectations on the following two inequalities:

z1{Z≥z} ≤ Z1{Z≥z} ≤ Z.

The bounds Makrov’s inequality provides are usually very crude, but often we can improve them
significantly.

Corollary 3.1.1. Let φ : R → [0,∞) be nondecreasing. Then for every z > 0

P (Z ≥ z) ≤ E[φ(Z)]

φ(z)
.

To prove the corollary, observe that {Z ≥ z} ⊆ {φ(Z) ≥ φ(z)}. Now apply Makrov’s ineqaulity. To
get the best bound from this method we can try minimize the righthand side in the corollary. There’s
an entire industry of inequalities based on this. Let’s present some of the most typical.

Definition 3.1.1. Let X be a RV. The Moment Generating Function of X, φX , is defined as

φX(t) := E[etX ], t ∈ R.

Applying the Corollary, we have that for anty x > 0,

P (X ≥ x) ≤ inf
t>0

φX(t)e−tz.

Example 3.1.1. Let X ∼ Pois(λ). Then

φX(t) = e−λ
∞∑
k=0

etk
λk

k!
= λ(et − 1).

Therefore

P (X ≥ x) ≤ inf
t>0

exp(λ(et − 1)− tx).

the exponent we need to minimize is equal to 0 at t = 0 and to ∞ as t → ∞. Therefore a minimum
exists. The derivative is λet − x, which has one root. Plug this solution into the expression to obtain

P (X ≥ x) ≤ exp(x− λ− x ln(x/λ)) = e−λex(1−ln(x/λ)).

The bound is useless (≥ 1) for x ≤ λ, but for large x it is pretty good. It can be also used obtain
an upper bound on the error term in the Taylor expansion for x → eλx (why?).

Another inequality that’s very handy is Chebychev’s inequality. To introduce it we need to quickly
review the notion of the variance. The variance is a very important concept, and will be a key figure
on the developments below. The reason is that among all nonlinear functions, the square is the most
accessible.
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Definition 3.1.2. Let X be a RV. If X is integrable, define the variance of X, Var(X) as

Var(X) := E[(X − E[X])2].

Proposition 3.1.2. Let X be a RV. Then

1. Var(X) ∈ [0,∞] and is finite if and only if E[X2] < ∞ and is zero if and only if the distribution
of X is δx for some x ∈ R.

In the next parts we assume Var(X) < ∞.

2. Var(X) = E[X2]− E[X]2.

3. For a constant c ∈ R, Var(cX) = c2Var(X) .

4. If X and Y are independent and with finite variance, then

Var(X + Y ) = Var(X) +Var(Y ).

In particular for any constant c ∈ R, Var(X + c) = Var(X)

We have the following.

Proposition 3.1.3 (Chebychev’s inequality). Let X be a RV with finite variance. Then for x > 0,

P (|X − E[X]| ≥ x) ≤ Var(X)

x2
.

Proof. Apply Corollary 3.1.1 to Z = |X − E[X]| with φ(z) = 1[0,∞)(z)z
2.

This very simple result is quite important. It is clear that the variance measures deviation from
the expectation, but inequality adds a quantitative layer to it. In fact, letting σ :=

√
Var(X), the

standard deviation of X, and replacing x with σx, the inequality becomes

P (|X − E[X]| ≥ σx) ≤ 1

x2
,

Thus, measuring the distance from E[X] by units of standard deviation “standardizes” the upper
bound in Chebychev’s inequality. As with Markov’s inequality, Chebychev’s inequality is by no means
tight, but it is something we can work with.

3.2 Convergence in Probability

3.2.1 Basic Properties

The proof of the result in the title in its weakest form is immediate from Chebychev’s inequality.
However, we will first describe a mode of convergence of RVs which we will use to describe the behavior
observed in the result.

Definition 3.2.1. Let (Zn : n ∈ N) and Z be RVs. We say that the sequence (Zn : n ∈ N) convergence
to Z in probability if for every ϵ > 0

lim
n→∞

P (|Zn − Z| > ϵ) = 0.

Convergence in probability does not imply a.s. convergence.

Example 3.2.1. Let (An : n ∈ N) be a sequence of events with limn→∞ P (An) = 0.

1. Then the sequence of indicators 1An
converges in probability to the constant RV 0.
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2. If, in addition, the events are independent and
∑∞

n=1 P (An) = ∞, then it follows from the Borel-
Cantelli II lemma that lim supn→∞ 1An = 1 a.s., therefore the sequence does not converge to 0
a.s.

As the next example shows that convergence in probability does not imply convergence of the
expectations.

Example 3.2.2. Let Z be any RV taking values in R. Let Zn := 1{|Z|≤n}Z.

1. Then {|Zn − Z| > ϵ} ⊆ {|Z| > n}. Yet, P (|Z| > n) = 1 − P (|Z| ≤ n) → 1 − P (|Z| < ∞) =
1− 1 = 0. Therefore (Zn : n ∈ N) converges to Z in probability.

2. If Z is integrable, then E[|Zn−Z|] = E[Z, |Z| > n] → 0 due to dominated convergence. However,
if Z is nonnegative and not integrable, then E[|Zn − Z|] = E[Z,Z > n] ≥

∫∞
n

P (Z ≥ t)dt = ∞.

3. Even worse, let X be a nonintegrable RV, and for each n ∈ N, let Bn ∼ Bern( 1n ). Let Zn := BnX.
Then (Zn : n ∈ N) converges in probability to 0, but Zn is not integrable.

There are some connections between the convergence modes we mentioned above:

Theorem 3.2.1. Let (Zn : n ∈ N) and Z by RVs.

1. If limn→∞ E[|Zn−Z|p] = 0 for some p > 0, then then (Zn : n ∈ N) converges to Z in probability.

2. If limn→∞ Zn = Z a.s., then (Zn : n ∈ N) converges to Z in probability.

3. If (Zn : n ∈ N) converges to Z in probability, then there exists a subsequence (Znk
: k ∈ N) which

converges to Z a.s.

Proof. 1. This follows directly from Markov’s inequality.

2. Because (|Zn − Z| : n ∈ N) converges to zero a.s. for every ϵ > 0, and for every ω ∈ Ω possibly
except on a set of measure zero, there exists N = N(ϵ, ω) such that |Zn−Z| ≤ ϵ for n > N(ϵ, ω).
Let An = {N(ϵ, ω) ≤ n}. A1 ⊆ A2 ⊆ . . . and P (∪∞

n=1An) = 1. Therefore P (An) → 1.
Equivalently, P (Ac

n) → 0. But {|Zn − Z| > ϵ} ⊆ Ac
n, and the result follows.

3. Let n1 := min{n : P (|Zn − Z| > 1
2 ) <

1
2}. Continue inductively, letting

nk+1 := min{n > nk : P (|Zn − Z| > 2(−k−1)) < 2−k−1}.

Now let Ak := {|Znk
− Z| > 2−k}. By construction P (Ak) ≤ 2−k and so by Borel-Cantelli, we

have that P (Ak i.o.) = 0, or |Znk
− Z| ≤ 2−k eventually, a.s. That is limn→∞ Znk

= Z a.s.

3.2.2 Convergence Theorems

It important to record the following results.

Proposition 3.2.1 (Fatou’s Lemma (in probability)). Let (Xn : n ∈ N) and X be nonnegative RVs
and suppose that (Xn : n ∈ N) converges to X in probability. Then lim inf E[Xn] ≥ E[X].

Proof. Let (nk : k ∈ N) be a subsequence attaining the lim inf. Then there exists a further subsequence
along which the RVs converge a.s. to X. Apply Fatou’s lemma to that sequence to obtain the
conclusion.

Proposition 3.2.2 (Dominated Convergence Theorem (in probability)). Let (Xn : n ∈ N), X and
Y be RVs with Y integrable, |Xn| ≤ Y a.s. and (Xn : n ∈ N) converging to X in probability. Then
limn→∞ E[|Xn −X|] → 0.

Exercise 3.2.1. Prove the theorem.
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3.3 Uniform Integrability and Vitali’s Theorem

In this section we will provide the Vitali’s Theorem, the “ultimate” convergence theorem: necessary
and sufficient condition to guarantee the conclusion of the dominated convergence theorem. So why
do we still used DCT so heavily? The necessary and sufficient condition is uniform integrability. The
domination condition is a relatively accessible condition to verify that implies uniform integrability.

We begin with a simple lemma that’s quite central in the sense that it gives us some “uniformity”
property of integrable RVs.

Lemma 3.3.1. Let X be an integrable RV. Then for every ϵ > 0 there exists δ > 0 such that
E[|X|, A] < ϵ for every event A with P (A) < δ.

Proof. Then for any event A, and M > 0, we have

E[|X|] ≤ E[|X|, A ∩ {|X| ≤ M}] + E[|X|, |X| > M ].

Noe pick ϵ > 0. The DCT asserts that we can find M large enough so that the second summand on
the righthand side is bounded above by ϵ/2. The first summand is bounded above by MP (A), and
therefore picking δ such that Mδ < ϵ/2 then gives E[|X|, A] ≤ ϵ

2 + ϵ
2 = ϵ, completing the proof.

We now define the main concept of this section.

Definition 3.3.1. Let (Xn : n ∈ N) be a sequence of RVs. The sequence is uniformly integrable (UI)
if

lim
M→∞

sup
n

E[|Xn|, |Xn| > M ] = 0.

Proposition 3.3.1. A sequence of integrable RVs (Xn : n ∈ N) is UI if and only if

lim
M→∞

lim sup
n→∞

E[|Xn|, |Xn| > M ] = 0.

Proof. If the sequence is UI, then the stated condition automatically holds because lim sup of a sequence
is ≤ than its sup. Next, suppose that the stated condition holds. Fix some ϵ > 0. Then there
exists M1 = M1(ϵ) such that lim supn→∞ E[|Xn|, |Xn| > M ] < ϵ/2. Therefore, there exists some
N = N(M1, ϵ) such that for n ≥ N , E[|Xn|, |Xn| > M1] ≤ ϵ. But since each of the RVs X1, . . . , XN

are integrable, the dominated convergence theorem guarantees the exists ofM2 such that E[|Xj |, |Xj | >
M ′] ≤ ϵ for all j ∈ {1, . . . , N}. Thus, for everyM ≥ max(M1,M2), we have that E[|Xn|, |Xn| > M ] < ϵ
for all n ∈ N. As ϵ > 0 is arbitrary, the result follows.

The domination condition in the DCT implies UI:

Example 3.3.1. Suppose that (Xn : n ∈ N) is a sequence of RVs and Z is an integrable RV with
|Xn| ≤ Z for all n ∈ N. Then (Xn : n ∈ N) is UI. Indeed, for every n ∈ N, E[|Xn|, |Xn| > M ] ≤
E[Z,Z > M ]. By dominated convergence, the righthand side tends to zero, and the result follows.

However, there are simple examples of UI sequences which are not dominated by any integrable
RV.

Example 3.3.2. Let (In : n ∈ N) be disjoint intervals in [0, 1] with ∪∞
n=1In = [0, 1], and with length

|In| = c/n2 for all n ∈ N (thus c = (
∑∞

n=1
1
n2 )

−1 = 6/π2). Let U ∼ U[0, 1] and define Xn := n1In(U).
Then for each M > 0, E[|Xn|, |Xn| > M ] if 0 if M > n, and is equal to nP (An) = c/n otherwise.
Therefore the supremum over n ∈ N is bounded above by c/M , and tends to 0 as M → ∞. However,
on the event {Xn > 0}, Xm = 0 for all m ̸= n, which implies that if Z ≥ Xn for all m, then
Z ≥

∑∞
n=1 Xn. The expectation of the righthand side is c

∑∞
n=1

1
n = ∞. Therefore there does not exist

an integrable RV dominating the sequence.

Here is a nice criterion for uniform integrability.

Proposition 3.3.2. Suppose that φ(x) is a function satisfying lim|x|→∞ φ(x)/|x| = ∞. If supn E[φ(Xn)] <
∞, then (Xn : n ∈ N) is UI.
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Proof. Let ϵ > 0 and let M be such that φ(x)/|x| ≥ 1
ϵ for |x| > M . Then

E[φ(Xn)] ≥ E[|Xn|φ(Xn)/|Xn|, |Xn| > M ] ≥ 1

ϵ
E[|Xn|, |Xn| > M ].

Therefore,

sup
n

E[|Xn|, |Xn| > M ] ≤ ϵ sup
n

E[φ(Xn)].

The result now follows by taking M → ∞ as ϵ is arbitrary.

Example 3.3.3. Let (Xn : n ∈ N) be as in Exampled 3.3.2. Take φ(x) = X2. Then E[φ(Xn)] =
E[X2

n] = n2c/n2 = c, and the UI follows from the proposition.

We’d like to give one more result before our main course. It’s a nice and simple property of UI
which will help down the road when we discuss the optional sampling theorem, for example, and is a
generalization of Lemma 3.3.1.

Proposition 3.3.3. Let (Xn : n ∈ N) be UI. Then for every ϵ > 0 there exists δ > δ(ϵ) such that
supn E[|Xn|, A] < ϵ for all events A with P (A) < δ.

Proof. The UI assumption reduces the proof to an argument identical to the proof of Lemma 3.3.1.
For any event A and M > 0,

E[|Xn|, A] ≤ E[|Xn|, A ∩ {|Xn| ≤ M}] + E[|Xn|, |Xn| > M ] ≤ MP (A) + E[|Xn|, |Xn| > M ].

Take M large enough so that the second summand on the righhand side is ≤ ϵ/2 for all n ∈ N, which
is what we get from UI for free. Next all we need now is to pick δ such that Mδ < ϵ/2, and our work
is done.

Now for the promised result.

Theorem 3.3.1 (Vitali’s Convergence Theorem). Let (Xn : n ∈ N) be RVs converging in probability
to an integrable random variable X. Then the following are equivalent.

1. (Xn : n ∈ N) is UI.

2. limn→∞ E[|Xn|] = E[|X|].

3. limn→∞ E[|Xn −X|] = 0.

Proof.

1 ⇒ 2. By Fatou’s lemma lim inf E[|Xn|] ≥ E[|X|]. By UI,

E[|Xn|] = E[|Xn|, |Xn| ≤ M ] + E[|Xn|, |Xn| > M ],

and so

lim supE[|Xn|] ≤ lim supE[|Xn|, |Xn| ≤ M ] + sup
n

E[|Xn|, |Xn| > M ].

Clearly |Xn|1{|Xn|≤M} ≤ |Xn|1{|Xn|<M+1} ≤ M + 1, (we replaced M by M + 1 and replaced
the weak inequality with a strict inequality (can you see why?). Now apply the DCT for
convergence in probability on the sequence in the middle of the inequalities to conclude that
lim supE[|Xn|, |Xn| ≤ M ] ≤ E[|X|, |X| ≤ M + 1]. Thus,

lim supE[|Xn|] ≤ E[|X|, |X| ≤ M + 1] + sup
n

E[|Xn|, |Xn| > M ].

Now take M → ∞ on the righthand side. Monotone convergnece applied to the first summand
and the UI applied to the second summand give

lim supE[|Xn|] ≤ E[|X|].
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2 ⇒ 3. By the triangle inequality, |Xn|+ |X| − |Xn −X| ≥ 0. By Fatou’s lemma, lim inf E[|Xn|+ |X| −
|Xn − X|] ≥ E[2|X|]. By the lefthand side is E[2|X|] − lim supE[|Xn − X|], and thed result
follows from the algebra.

3 ⇒ 1. Again, triangle inequality gives

E[|Xn|, |Xn| > M ] ≤ E[|X −Xn|, |Xn| > M ] + E[|X|, |Xn| > M ]. (3.3.1)

We now bound each of the summands on the righthand side. To do that, fix ϵ > 0. Then there
exists N = N(ϵ) such that E[|Xn −X|] < ϵ/2. Next, by Markov’s and the trjangle inequality,

P (|Xn| > M) ≤ E[|Xn|]/M ≤ E[|Xn −X|+ |X|]/M,

but since supn E[|Xn −X|] < ∞ and X is integrable, there exists a constant independent of n,
such that

sup
n

P (|Xn| > M) ≤ C/M.

As a result of Lemma 3.3.1, we can therefore find M = M(ϵ) large enough so that E[|X|, |Xn| >
M ] ≤ ϵ/2 for all n. Putting both together, we have

E[|Xn|, |Xn| > M ] ≤ ϵ/2 + ϵ/2, n ≥ N(ϵ),M > M(ϵ).

This therefore gives lim supn→∞ E[|Xn|, |Xn| > M ] ≤ ϵ if M > M(ϵ). By letting M → ∞, we
then obtain limM→∞ lim supn→∞ E[|Xn|, |Xn| > M ] = 0. As E[|Xn|] ≤ E[|Xn −X|] +E[|X|] <
∞, Proposition 3.3.1 gives the result.

3.4 Weak Law of Large Numbers

The proof of this result is a an immediate application of Chebychev’s inequality. It is weak because it
gives convergence in probability, not almost surely.

Theorem 3.4.1 (Weak Law of Large Numbers). Let (Xn : n ∈ N) be independent and uncorrelated
with finite expectation µ and finite nonzero variance σ2. For n ∈ N, let X̄n := X1+···+Xn

n be the
empirical mean. Then for every ϵ > 0,

P (|X̄n − µ| ≥ ϵ) ≤ σ2

nϵ2
.

In particular, (X̄n : n ∈ N) converges in probability to µ.

Proof. Apply Chebychev to X̄n, noting that E[X̄n] = µ and Var(X̄n) =
nVar(X1)

n2 .

Even with this very simple result, we can prove some intersecting things.

Let’s take some continuous function f : [0, 1] → R. Now let (Xn : n ∈ N) be some IID sequence
taking values in [0, 1] with mean x. Let’s estimate E[f(X̄n)], and see how far it is from f(µ). Because
f is continuous on a closed bounded interval it is bounded, ∥f∥ := maxx∈[0,1] |f(x)| < ∞ and it is
uniformly continuous: for any ϵ > 0 there exists δ > such that if |x − y| < δ, then |f(x) − f(y)| < ϵ.
This gives

|E[f(X̄n)− f(µ)]| ≤ ϵP (|X̄n − µ| < δ) + 2∥f∥∞P (|X̄n − µ| ≥ δ).

Applying Chebychev’s inequality, we have

|E[f(X̄n)]− f(µ)| ≤ ϵ+ 2∥f∥∞
Var(X1)

nδ2
. (3.4.1)

Note that the lefthand side is independent of the choice of ϵ. Now let x ∈ [0, 1] and pick X1 ∼
Bern(x). Then Var(X1) = x(1− x) ≤ 1

4 .
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Observe that

E[f(X̄n)] =

n∑
k=0

f(k/n)

(
n

k

)
xk(1− x)n−k.

Note that as a function of x, this is a polynomial, we denote it by pf,n(x). Therefore, (3.4.1) becomes

|pf,n(x)− f(x)| ≤ ϵ+ 2∥f |∞
1

4nδ2
. (3.4.2)

The righthand side is independent of x, and therefore

lim sup
n→∞

max
x∈[0,1]

|pf,n(x)− f(x)| ≤ ϵ.

As ϵ was arbitrary, we proved the following:

Theorem 3.4.2 (Bernstein’s Polynomials). Let f be a continuous function on [0, 1]. For n ∈ N,
define the Bernstein polynomial pf,n(x) :=

∑n
k=0 f(

k
n )

(
n
k

)
xk(1− x)n−k. Then (pf,n : n ∈ N) converges

uniformly to f .

Let’s get another classic result: confidence intervals. The problem here is to find a distribution
through repeated sampling. Let’s suppose that in a sequence of experiments we’re looking at a certain
feature (e.g. person sampled is left-handed), and that our resulting IID sequence is the respective
indicators of that feature for the samples. Therefore, the distribution of X1 + · · · + Xn is binomial
with parameters n and p, but p is unknown. Now, we already know that Var(X1) = p(1 − p) ≤ 1

4 , a
fact we used in our derivation of the result above. So Chebychev gives us:

P (|X̄n − p| ≥ ϵ) ≤ 1

4nϵ2
.

Rewrite this as a lower bound on the probability of the complement gives the following:

Theorem 3.4.3. Let (Xn : n ∈ N) be IID Bern(p). Fix ϵ > 0. Then

P (p ∈ (X̄n − ϵ, X̄n + ϵ)) ≥ 1− 1

4nϵ2
.

The righthand side is independent of p. The meaning of this statement is this: Fix ϵ > 0 and n
and consider the random interval with width 2ϵ, X̄n− ϵ, X̄n+ ϵ). This random interval is known as the
confidence interval. Without any assumptions on p, it lies in the confidence interval, with probability
larger or equal to the expression on the right and which is only a function of our pre-determined
parameters ϵ and n. This probability is often referred to the confidence level (95% confidence = 0.95
probability). After we cover the strong law of large numbers we will be able this probability, you’ll
be convinced that the practical meaning of this probability is that if we repeat this procedure many
many times, then the confidence level gives the proportion of times that the unknown parameter was
within the confidence interval. In order words, we obtained a method for estimating the unknown p.

To give an illustration: the unknown parameter is within 5% (0.05) from our empirical mean with
confidence level which is at least 1 − 1

4n0.052 = 1 − 100
n . It is enough to take 2000 samples to have

a confidence level of at least 95%. This bound is pretty crude, but it shows that a relatively small
sample can give a lot of information!

One can use Chebychev’s inequality under less restrictive conditions. In fact, even when the RVs
don’t have a finite expectation. This is done through truncation. Here’s one such result, which presents
the idea. We will push this idea further in the next section.

Theorem 3.4.4. Suppose that (Xn : n ∈ N) are identically distributed and independent RVs satisfying

lim
x→∞

xP (|X1| > x) = 0.

Let µn := E[X1, |X1| ≤ n]. Then (X̄n − µn : n ∈ N) converges in probability to 0.
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Proof. Let Xk,n := Xk1{|Xk|≤n}, and let S̄n = 1
n

∑n
k=1 Xk,n. Then E[S̄n] = µn and Var(S̄n) =

Var(X1,n)
n . Let An := {|S̄n − µn| ≥ ϵ}, Chebychev’s inequality gives

P (An) ≤ Var(X1,n)/(nϵ
2).

Now Var(X1,n) ≤ E[X2
1 , |X1| ≤ n] ≤

∫ n2

0
P (X2

1 ≥ t)dt = 2
∫ n

0
tP (|X1| ≥ t)dt. By assumption, this is

o(n) as n → ∞.
Let Bn := {X̄n ̸= S̄n} ⊆ ∪n

k=1{|Xk,n| ≥ n}. Therefore, P (X̄n ̸= S̄n) ≤ nP (|X1| ≥ n) → 0.
Clearly, {|X̄n − µn| ≥ ϵ} ⊆ (An ∩ Bc

n) ∪ Bn ⊆ An ∪ Bn. As P (An) + P (Bn) → 0, the result
follows.

Example 3.4.1. Lets assume that for x ≥ 0, P (X1 ≥ x) = e
(e+x) ln(e+x) (note that in this case X

has a density. What is it?). Clearly, the condition in the theorem holds, but we also notice that the
expectation of X1 is infinite because

∫∞
0

P (X1 ≥ t)dt = ∞. Now

µn =

∫ n

0

P (X1 ≥ t)dt = e ln ln(e+ n),

and therefore X̄n − e ln ln(e+n) → 0 in probability. Note that this implies, but is a stronger statement

than X̄n

ln lnn → e in probability.

3.5 Kolmogorov’s Maximal Inequality

There is a nice and clever way to get a result much stronger than Chebychev’s inequality, under similar
assumptions.

Theorem 3.5.1 (Kolmogorov’s Maximal Inequality). Let X1, . . . , Xn be independent, each with zero
expectation and finite variance. For n ∈ N, let Sn :=

∑n
k=1 Xk be the partial sum. Then for every

x > 0,

P (max
k≤n

|Sk| ≥ x) ≤ E[S2
n]

x2
.

Proof. Let A be the event in question:

A := {max
k≤n

|Sk| ≥ x}.

We can write it as a disjoint union according to the first k satisfying Sk ≥ x. More precisely, let

Ak := {|Sk| ≥ x,max
l<k

|Sl| < x}.

Then A = ∪n
k=1Ak, and the union is disjoint. Now use domain additivity (or additivity of the integral

to write):

E[S2
n, A] =

n∑
k=1

E[S2
n, Ak].

To estimate each summand on the righthand side, write

S2
n = (Sk + (Sn − Sk))

2 ≥ S2
k + 2(Sn − Sk).

Now note that Ak ∈ σ(X1, . . . , Xk), and Sn − Sk ∈ σ(Xk+1, . . . , Xn). These two σ-algebras are
independent, and so E[Sn − Sk, Ak] = E[Sn − Sk]P (Ak) = 0 ∗ P (Ak). This gives

E[S2
n] ≥

n∑
k=1

E[S2
k, Ak] ≥ x2

n∑
k=1

P (Ak) = x2P (A).
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Example 3.5.1. Let (Xn : n ∈ N) be IID with mean µ and finite variance σ2 > 0. Let Mn =

maxk≤n |Sk − E[Sk]|. From the theorem we have P (Ml2 ≥ ϵl) ≤ l2σ2

ϵ2l4 = σ2

ϵ2l2 . From Borel-Cantelli II

we have P (Ml2/l
2 ≥ ϵ i.o.) = 1, or lim sup

Ml2

l2 ≤ ϵ a.s. Since this is true for all rational ϵ, it follows

that lim
Ml2

l2 = 0 a.s. Now for every n ∈ N there’s a unique l ∈ N such that l2 ≤ n < (l+1)2. We have

Ml2

l2
× l2

(l + 1)2
≤ Mn

n
≤

M(l+1)2

(l + 1)2
× (l + 1)2

l2
.

Take n → ∞ and apply the squeeze theorem to conclude that Mn/n to0 a.s. Let’s write this.

maxk≤n |Sk − kµ|
n

→ 0 a.s.

In particular, Sn

n → µ a.s. (a statement we can prove by applying the argument directly to Chyebychev
- no need for the maximal inequality). This gives us a strong law, under the assumption of finite
variance. Much of work in the proof of the strong law of large numbers would be to get rid of this
additional assumption.

Exercise 3.5.1. Repeat the argument in the example above, but now fixing some α > 0 and looking at
Mlk/l

1
2 (k(1+α)), for k satisfying kα > 1, to conclude that Mn/n

1/2+α → 0 a.s.

Here’s another application.

Theorem 3.5.2 (Kolmogorov’s Two Series Theorem). Let X1, X2, . . . be independent with expectation
zero. If

∑∞
n=1 E[X2

n] < ∞ then
∑∞

n=1 Xn converges a.s.

Proof. Define the partial sum SN :=
∑N

n=1 Xn. Now fix M and n and let’s look at P (maxk≤n |SM+k−
SM | ≥ x). By the maximal inequality, this is bounded above by E[(SM+n−SM )2]/x2 ≤ TM/x2, where
TM :=

∑
k≥M E[X2

k ]. Use the continuity of probability measures from below to obtain

P (sup
k∈N

|SM+k − SM | ≥ x) ≤ TM/x2.

For N,N ′ ≥ M , the triangle inequality gives |SN − SN ′ | ≤ |SN − SM | + |SM − S′
N |, and therefore,

supN,N ′ |SN − SN ′ | ≤ supN |SN − SM |+ supN ′ |S′
N − SM | ≤ 2 sup |SN − SM |. It follows that

P ( sup
N,N ′≥M

|SN − SN ′ | ≥ 2x) ≤ P ( sup
N≥M

|SN − SM | ≥ x) ≤ TM

x2
.

Take x = 1
n and observe that the supremum on the lefthand side is decreasing,

P ( sup
N,N ′≥M

|SN − SN ′ | < 2

n
) ≥ 1− n2TM .

The event on the left is decreasing as M → ∞. Also, limM→∞ TM = 0. We therefore have

P ( lim
M→∞

sup
N,N ′≥M

|SN − SN ′ <
2

n
) = 1.

As this is true for all n, we have proved that limM→∞ supN,N ′≥M |SN − SN ′ | = 0 a.s. That is
(SN : N ∈ N) is a Cauchy sequence, a.s. As every Cauchy sequene in R is convergent, the result
follows.

The next example is a true classic. We all know that
∑∞

n=1
(−1)n

n converges. What if instead of
the periodic pattern of signs we will “sprinkle” signs randomly?

Example 3.5.2. Let (Bn : n ∈ N) be IID Ber(p) for some p ∈ (0, 1). Consider the series
∑∞

n=1
(−1)Bn

n .

Observe that E[(−1)Bn ] = p − (1 − p) = 2p − 1. Let Xn := (−1)Bn−(2p−1)
n . Then E[Xn] = 0 and

E[X2
n] =

1−(p−(1−p))
n2 = 2p(1−p)

n2 . It follows from the theorem that
∑∞

n=1 Xn =
∑∞

n=1

(
(−1)Bn

n − 2p−1
n

)
.

converges a.s. Since the deterministic series
∑∞

n=1
2p−1
n is either 0 or infinity according to whether

p = 1
2 or p ̸= 1

2 , it follows that our original series converges a.s. if p = 1
2 and diverges a.s. if p ̸= 1

2 .
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3.6 Kolmogorov’s Three Series Theorem

Theorem 3.6.1. Suppose that (Xn : n ∈ N) is a sequence of independent RVs. Let A > 0 and let
Yn := Xn1{|Xn|≤A}. Then the series

∑∞
n=1 Xn converges a.s. if and only if all of the following three

series converge:

1.
∑∞

n=1 P (|Xn| > A)

2.
∑∞

n=1 E[Yn].

3.
∑∞

n=1 E[Y 2
n ].

Proof. Since {Xn ̸= Yn} ⊆ {|Xn| > A}, the convergence of the first series and the Borel-Cantelli
lemma imply that Xn = Yn for all but finitely many n-s, a.s. In particular,

∑∞
n=1 Xn converges if and

only if
∑∞

n=1 Yn converges.
We will therefore assume the first series converges, and continue showing the sufficiency of the

convergence of the remaining two series.
Let Zn = Yn − E[Yn]. Then E[Zn] = 0 and Var(Zn) ≤ E[Y 2

n ]. As the third series converges, we
have that

∑∞
n=1 Zn converges a.s. As

∑∞
n=1 E[Yn] converges, we have that

∑∞
n=1 Yn =

∑∞
n=1 Zn +∑∞

n=1 E[Yn] converges a.s.
We will leave the necessity to a later stage.

Example 3.6.1. Let’s revisit Example 3.5.2, but in greater generality now. Let (an : n ∈ N) be a
sequence of positive numbers satisfying limn→∞ an = ∞ (we do not assume monotonicity), and let
(Bn : n ∈ N) be IID Bern(p) for some p ∈ (0, 1). We want to consider the convergence of the random

series
∑∞

n=1
(−1)Bn

an
. Without loss of generality we can assume an ≥ 1 for all n. We apply the three

series theorem. By choosing A = 1, all the terms of the first series are zero. Also, Yn = Xn. Now
E[Xn] =

1−2p
an

, and E[X2
n] =

1
a2
n
. Let’s continue case by case:

1. If p = 1
2 , then all three series converge a.s. if and only if

∑∞
n=1

1
a2
n
< ∞.

2. If p ̸= 1
2 . The second series convergence if and only if

∑∞
n=1

1
an

converges, which then implies

that
∑∞

n=1
1
a2
n

converges. Thus, in this case our series converges a.s. if and only if
∑∞

n=1
1
an

converges. Or: in this case the random series converges if and only if it converges absolutely.
Not really interesting.

Finally, due to Kolmogorov’s zero-one law, if the series does not converge a.s. then it diverges a.s.

3.7 Strong Law of Large Numbers

The difference from the results presented earlier is that the strong law gives convergence almost surely.
We will present one proof, based on Kolmogorov’s maximal inequality and truncation.

Let’s begin with a calculus result.

Lemma 3.7.1 (Kronecker’s Lemma). Let
∑∞

n=1 an be a convergent sequence. Let 0 ≤ b1 ≤ b2 ≤ . . .
satisfy limm→∞ bn = ∞. Then limn→∞

1
bn

∑n
k−1 bkak = 0.

Proof. Let Tn :=
∑n

k=1 ak. The convergence of the series is equivalent to (Tn : n ∈ N) being a
convergent sequence and in particular it is bounded by some constant C and is a Cauchy sequence.
That is, for any ϵ > 0 there exists N = N(ϵ) such that supN≤n′≤n |Tn − Tn′ | ≤ ϵ. Set T0 := 0 and
define Tn,n′ := Tn − Tn′ . Observe that

n∑
k=1

bkak = b1T0,n + (b2 − b1)T1,n + · · ·+ (bn − bn−1)Tn,n

=
∑
k<N

(bk − bk−1)Tk,n +
∑
k≥N

(bk − bk−1)Tk,n = (∗)
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Apply the triangle inequality to obtain

|(∗)| ≤ 2CbN + ϵbn.

Divide by bn to obtain
(∗)
bn

≤ 2CbN
bn

+ ϵ.

Take n → ∞ and then ϵ → 0.

Theorem 3.7.1. Suppose that (Xn : n ∈ N) are independent RVs satisfying
∑∞

n=1
1
n2Var(Xn) < ∞.

Let X̄n := 1
n

∑n
k=1 Xk, and let µn := E[X̄n]. Then

lim
n→∞

X̄n − µn = 0 a.s.

Proof. Let Zn := Xn − E[Xn]. Then E[Zn] = 0, and we also have
∑∞

n=1 Var(
Zn

n ) < ∞. There-
fore Theorem 3.5.2 gives

∑∞
n=1

1
nZn < ∞ a.s. Use this and Kronecker lemma to conclude that

limn→∞
1
n

∑n
k=1 Zk = 0 a.s..

The conclusion does not have any reference to the variance. It was just a technical condition. We
will get rid of it through truncation. For this we need yet another calculus lemma.

Lemma 3.7.2. Suppose that (an :∈ N) is a nonnegative sequence satisfying
∑∞

m=1 am/m < ∞. Then

∞∑
n=1

n−2
n∑

m=1

am < ∞.

Proof. Without loss of generality we may assume that am ≥ 0 for all m. Write the inner sum as∑∞
m=1 1[0,n](m)am, and move n−2 inside this sum. Now use the monotone convergence theorem to

conclude that the double sum is equal to

∞∑
m=1

∑
n≥m

1

n2
am

Because
∑

n≥m
1
n2 ≤ C

m , it follows that the entire sum is bounded above by C
∑∞

m=1
am

m

Corollary 3.7.1. Let X be integrable. Then

∞∑
n=1

n−2E[|X|2, |X| ≤ n] < ∞.

Proof.

E[|X|2, |X| ≤ n] ≤
n∑

m=1

m2P (m− 1 < |X| ≤ m).

Let am := m2P (m − 1 < |X| ≤ m). Then am/m = mP (m − 1 < |X| ≤ m) and so
∑∞

m=1 am/m ≤
E[|X|] + 1. Therefore, the result follows from the Lemma.

We are ready for the main result of this section.

Theorem 3.7.2 (Strong Law of Large Numbers). Let (Xn : n ∈ N) be IID and integrable RVs. Let
µ := E[X]. Then

1. limn→∞ X̄n = µ a.s.

2. limn→∞ E[|X̄n − µ|] = 0.
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Proof. Let Yn := Xn1{|Xn|≤n}. Then Var(Yn) ≤ E[Y 2
n ] = E[X2

1 , |X1| ≤ n]. It follows from the

Corollary that
∑∞

n=1
1
n2Var(Yn) < ∞. Thus theorem 3.7.1 gives that Ȳn − 1

n

∑n
k=1 E[Yn] → 0 a.s.

Now E[Yn] = E[Xn, |Xn| ≤ n] = E[X1, |X1| ≤ n] → E[X1], by dominated convergence, and so
1
n

∑n
k=1 E[Yn]− E[X1] → 0. Next, P (Yn ̸= Xn) ≤ P (|Xn| ≥ n) = P (|X1| ≥ n). But

∞∑
n=1

P (|X1| ≥ n) ≤
∫ ∞

0

P (|X1| ≥ t)dt = E[|X1|] < ∞

, therefore Yn = Xn eventually a.s. and as a result Ȳn−X̄n → 0 a.s. We therefore have X̄n−E[X1] → 0
a.s. This prove the first part.

To conclude, let ¯|X|n := |X1|+ · · ·+ |Xn|. Then the first part gives ¯|X|n → E[|X1|] a.s. Now look
at

Zn := ¯|X|n + E[|X1|]− |X̄n − E[X1]|.

By the triangle inequality, Zn ≥ 0. Apply Fatou’s lemma to obtain

lim inf
n→∞

E[Zn] ≥ 2E[|X1|].

But E[Zn] = 2E[|X1]]−E[|X̄n −E[|X1|], and so lim infn→∞ E[Zn] = 2E[|X1|]− lim supn→∞ E[|X̄n −
E[X1]|], and the result follows.

An important application is the following:

Theorem 3.7.3 (Glivenko-Cantelli). Let (Xn : n ∈ N) be IID with distribution function F . For x ∈ R,
let F̄n(x) =

1
n

∑n
k=1 1(−∞,x](Xk). Then supx∈R |F̄n(x)− F (x)| = 0 a.s.

Let’s parse this: the random function F̄n is called the empirical distribution function. For each x,
it gives the proportion of the first samples which are ≤ x. It is a bonafide distribution function, yet
random. The expectation of F̄n(x) is P (X ≤ x) = F (x). The theorem states that the sequence of
empirical distribution functions converges uniformly to F , a.s. Or, the underlying distribution can be
recovered through repeated samples.

Proof. We will give the proof in the special case of (Xn : n ∈ N) are uniformly distributed, with the
general case obtained as a corollary in Assignment #3. In this special case the CDF F is given by

F (x) =


0 x < 0

x 0 ≤ x < 1

1 1 ≤ x

It is clearly uniformly continuous with |F (x) − F (y)| ≤ |x − y|. To prove the theorem in this setting
it is enough to consider x ∈ [0, 1], as outside this interval F̄n = F .

Next, for every l ∈ N and k ∈ Z+ let xl,k := k
l . Also define Tl := {xl,k : k = 0, . . . , l} and

T := ∪∞
l=1Tl. By the strong law of large numbers for each x ∈ R, F̄n(x) → F̄ (x) a.s. (this event may

depend on x). Since T is countable, it follows that F̄n −F for all x ∈ T , a.s. (as the event in question
is a countable intersection of events, each with probability 1). Denote this event by A.

Let ω ∈ A and ϵ > 0. Pick l > 1
ϵ . Note then that the uniform continuity implies F (xl,k) −

F (xl,k+1)| < ϵ. Next, pick N = N(ω, ϵ) such that for all n ≥ N , |F̄n(x)−F (x)| < ϵ for all x ∈ Tl. Now
pick any x ∈ [0, 1]. Clearly, there exists k ∈ Tl such that xl,k ≤ x ≤ xl,k+1. Let’s do the calculations:

F̄n(x)− F (x) ≤ F̄n(xl,k+1)− F (xl,k) = F̄n(xl,k+1)− F (xl,k+1) + F (xl,k+1)− F (xl,k) ≤ ϵ+ ϵ = 2ϵ,

with the first inequality obtained from the convergence on Tl and the uniform continuity of F . A
similar argument gives a lower bound of −2ϵ. Therefore we have shown that for any ω ∈ A and ϵ > 0,
there exists N = N(ω, ϵ) ∈ N such that for all n ≥ N , |F̄n(x)− F (x)| ≤ 2ϵ for all x ∈ [0, 1], hence for
all x ∈ R. This complete the proof.
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Chapter 4

Central Limit Theorems

4.1 Introduction

The law of large numbers gives the connection between the empirical means obtained by repeatedly
and independently sampling from some distribution and the distribution itself. It states that the
empirical means (or time averages) converge to the expectation, the sample space mean. The central
limit theorem provides a correction, describing how far the empirical means are from the expectation.
A hint on how to identify this correction is given by the following simple argument.

Suppose that (Xn : n ∈ N) are IID with expectation µ and variance σ2. Let Sn be the partial sum
Sn := X1 + · · · +Xn. Then Var(Sn/n

α) = σ2n1−2α. This tends to zero if α > 1
2 (including the case

α = 1), equal to 1 if α = 1
2 , and to infinity otherwise. Therefore, α = 1

2 seems as the right scale to

look for a “correction term” for the law of large numbers. Write Yn := Sn−nµ√
n

=
√
n(X̄n − µ). Then

the above argument shows that Var(Yn) = σ2. By construction E[Yn] = 0. We can therefore express
X̄n as

X̄n = µ+
1√
n
Yn,

now thinking of Yn as a RV with zero expectation and variance σ2. The Central Limit Theorem
describes the distribution of Yn as n → ∞, asserting that for large n it is nearly N(0, σ2), regardless
of the underlying distribution. In this chapter we make this statement precise.

4.2 Weak Convergence

The first step towards the central limit theorem is a discussion on convergence of probability distri-
butions. The standard notion of convergence that we will use in the statement and the proof of the
Central Limit Theorem is called weak convergence. We will now describe it.

Recall that ifX is a RV its distribution is a Borel probability measure PX defined as the pushforward
measure of X:

PX(A) := P (X ∈ A).

Conversely, if P is a Borel Probability measure on R, and X : R → R is the identify function, then the
distribution of X, PX , is P .

The notion of the distribution of a RV allows us to standardize the discussion and instead of
looking at probability measures on different and possible abstract spaces, restrict the discussion to
Borel probability measures on the real line. As a concrete example, the indicator of Heads in a fair
coin toss and the indicator that a uniform RV on [0, 1] is ≤ 1

2 may be RVs on distinct probability
spaces, but their distributions are the same.

In light of this, the notion of convergence we will define and study will be for Borel probability
measures. Let’s look at a simple example.

Example 4.2.1. Let Pn be the Borel probability measure which is uniform on Tn := {k/n : k ∈
{0, . . . , n − 1}}, equivalently, Pn = 1

n

∑n−1
k=0 δk/n. These measures have finite support. Letting T =

∪∞
n=1Tn. Then Pn(T ) = 1. If P is the uniform measure on [0, 1], P (T ) = 0 because T is countable.
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In particular, we do not have Pn(A) → P (A) for all Borel sets A. However, if we lift our gaze from
the wild collection of Borel sets to integrals of “nice” functions, a connection between Pn and P will
appear. Indeed, if we take any bounded and continuous function f , then

∫
fdPn = 1

n

∑n−1
k=0 f(k/n) →∫ 1

0
f(t)dt =

∫
fdP . Therefore, at least from the perspective of expectations of bounded continuous

functions, the measures (Pn : n ∈ N) do approach the measure P .

This motivates the following definition:

Definition 4.2.1. • Let (Pn : n ∈ N) and P be Borel measures on R. We say that the sequence
converges to P weakly if

∫
fdPn →

∫
fdP for any continuous and bounded function f . We

denote this convergence by Pn ⇒ P .

• We say that the distributions of the RVs (Xn : n ∈ N) converge weakly to the distribution of the
RV X if PXn

⇒ PX , or, equivalently

lim
n→∞

E[f(Xn)] = E[f(X)]

for every continuous and bounded f . Weak convergence of random variables is also known as
convergence in distribution and convergence in law.

We have the following Fatou-type characterization of weak convergence.

Proposition 4.2.1. Let (Pn : n ∈ N), P be Borel probability measures on R. Then Pn ⇒ P if and
only if lim inf

∫
gdPn ≥

∫
gdP for every nonnegative, bounded and continuous g.

Proof. If Pn ⇒ P , the condition automatically holds. Assume that the condition holds then, and let
f be continuous and bounded. Then there exists some M > 0 such that |f(x)| ≤ M for all x ∈ R. Let
g := M − f . Then g is nonnegative, bounded and positive and therefore lim inf

∫
gdPn ≥

∫
gdP . But

the lefthand side is equal to M − lim supn→∞
∫
fdPn and the righthand side is M −

∫
fdP . Therefore,

lim sup
∫
fdPn ≤

∫
fdP . To show the lim inf

∫
fdPn ≥

∫
fdP apply the same argument to the function

g := f +M .

Weak convergence follows from convergence in different modes we have mentioned before:

Proposition 4.2.2. Suppose that (Xn : n ∈ N) and X are random variables.

1. If Xn → X in probability then the convergence also holds in distribution.

2. If c is a constant and Xn ⇒ c, then Xn → X in probability.

Proof. 1. Apply the dominated convergence theorem for sequences converging in probability.

2. Fix ϵ > 0. Let fϵ be a function taking values in [0, 1] which is continuous, which is is equal to 1
outside the interval (c− ϵ, c+ ϵ) and equal to 0 at c. As {|Xn − c| ≥ ϵ} ⊆ {fϵ(Xn) ≥ 1}, and so
P (|Xn− c| ≥ ϵ) ≤ E[fϵ(Xn)]. But since Xn ⇒ c, it follows that E[fϵ(Xn)] →

∫
fϵδc = fϵ(c) = 0.

We will now present several alternative characterizations of weak convergence.

Theorem 4.2.1. Let (Pn : n ∈ N) and P be Borel probability measures on R. Then the following are
equivalent.

1. Pn ⇒ P .

2. lim supPn(F ) ≤ P (F ) for all closed F .

3. lim inf Pn(U) ≥ P (U) for all open U .

4. limn→∞ Pn(A) = P (A) for all A with P (∂A) = 0.

Before proving the theorem, we present the following corollary which is used by some authors as the
definition of weak convergence. Recall that the cumulative distribution function of a Borel probability
measure P is the function F (x) := P (X ≤ x). We have the following, which some authors use as a
definition for weak convergence.
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Corollary 4.2.1. Let (Pn : n ∈ N) and P be Borel probability measures, and let (Fn : n ∈ N), F be the
respective distribution functions. Then Pn ⇒ P if and only if limn→∞ Fn(x) = F (x) at all continuity
points of F .

Proof of Corollary 4.2.1. For x ∈ R, we let Ax := (−∞, x]. If Pn ⇒ P and x is a continuity point of F ,
then ∂Ax = {x}, and since P (∂Ax) = F (x)− F (x−) = 0, we have Fn(x) = Pn(Ax) → P (Ax) = F (x).

Conversely, let U be any open set. Without loss of generality, U = ∪∞
i=1(ai, bi) where the union is

disjoint. Now Pn((ai, bi)) = Fn(bi−)− Fn(ai). Since F is nondecreasing, the set of points where it is
discontinuous is countable. In particular, its complement in dense. Let ϵ > 0. Then for each i we can
find continuity points of F such that (āi, b̄i] ⊆ (ai, bi) and F (bi−)− F (b̄i) + F (āi)− F (ai) ≤ ϵ/2i (we
use the fact that F has left limit at bi and is right continuous at ai). Thus,

Pn(U) ≥ Pn(∪∞
i=1(āi, b̄i]) =

∞∑
i=1

Pn((āi, b̄i]) =

∞∑
i=1

(Fn(b̄i)− Fn(āi)).

Apply Fatou’s lemma to the righthand side to obtain

lim inf
n→∞

Pn(U) ≥
∞∑
i=1

(F (b̄i)− F (āi)) ≥
∞∑
i=1

(F (bi−)− F (ai))− ϵ = P (U)− ϵ.

The result now follows as ϵ > 0 is arbitrary.

Proof of Theorem 4.2.1.1 ⇒ 2 If F is empty, there’s nothing to prove. Suppose then that F is nonempty
closed set. Let dF (x) := inf{|y − x| : y ∈ F}. Note that if y ∈ F , then dF (x) ≤ |y − x|, and
in particular, the infimum can be taken over F ∩ [x− y, x+ y], a closed bound set. As a result,
there exists a point yF ∈ F , satisfying dF (x) = |yF − x|. Next we show that dF is continuous.
For any x, x′ we have dF (x

′) ≤ |yF − x′| ≤ dF (x) + |x′ − x|. By switching the roles of x and x′

we then have |dF (x)− dF (x
′)| ≤ |x− x′|. For ϵ > 0, let hϵ(t) be the function which is equal to 1

on [1,∞), to zero on (−∞, 1− ϵ) and increases linearly on (1− ϵ, 1). Clearly hϵ(1− dF ∧ 1)(x) is
a continuous function which is equal to 1 on F , and is < 1 on F d. Moreover, as ϵ → 0, hϵ → 1F .
Next,

lim sup
n→∞

Pn(F ) ≤ lim
n→∞

∫
hϵdPn =

∫
hϵdP,

where the equality follows from the assumption that Pn ⇒ P . Now take ϵ → 0 and use dominated
convergence to conclude the proof.

2 ⇒ 3 As the complement of every open set is a closed set, this implication follows immediately, and so
does 3 ⇒ 2.

3 ⇒ 4 Let A be any Borel set with P (∂A) = 0. Recall that A◦ ⊆ A◦ ∪ ∂A, where A◦ is the interior
of A, which is open, and the righthand side is the closure of A which is closed. Thus P (A◦) ≤
P (A) ≤ P (A◦) + P (∂A) = P (A◦), or P (A) = P (A◦). Using this and part 3), we have

lim inf Pn(A) ≥ lim inf Pn(A
◦) ≥ P (A◦) = P (A).

4 ⇒ 1 To complete, suppose that f is continuous, bounded and nonnegative function. For t ≥ 0, let
At = {x : f(x) ≥ t}. We have ∂At = {x : f(x) = t}. Next, the function t → P (f ≥ t) is non-
increasing and therefore has at most a countable number of discontinuities, all of which are jump
discontinuities. The point t is a discontinuity if and only if P (At) > 0. Therefore from 4) we
have that limn→∞ Pn(At) = P (At) for all but countably many t. In particular, the sequence of
functions t → Pn(At) converges a.e. with respect to the Lebesgue measure on R to the function
t → P (At). This and Fatou’s lemma give

lim inf
n→∞

∫
fdPn = lim inf

n→∞

∫
[0,∞)

Pn(f ≥ t)dm ≥
∫
[0,∞)

P (f ≥ t)dm =

∫
fdP,

which completes the proof due to Proposition 4.2.1.
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4.3 Convergence to Poisson

We’ll take a break from all the technical results characterizing weak convergence and present something

different. We recall that a RV X is Pois(λ)-distributed if P (X = ℓ) = e−λ λℓ

ℓ! , ℓ ∈ Z+. A simple
calculation gives the following:

Lemma 4.3.1. Let X ∼ Pois(λ) and Y ∼ Pois(µ) be independent. Then X + Y ∼ Pois(λ+ µ)

Exercise 4.3.1. Prove the lemma.

Proposition 4.3.1. Let (Xk : k = 1, . . . , n) be independent with Xk ∼ Bern(pk) for some pk ∈ (0, 1),
and let X :=

∑n
k=1 Xk. Then there exists a probability space and on it random variables X̃ and S̃

such that:

1. X̃ has the same distribution as X.

2. S̃ ∼ Pois(
∑n

k=1 pk).

3. P (X̃ ̸= S̃) ≤
∑n

k=1 p
2
k.

This results is obtained by a technique we call coupling: we will construct random variables on the
same space forcing them to be the same on events whose probability we will then estimate.

Corollary 4.3.1 (Le Cam’s Theorem). Let (Xk : k = 1, . . . , n) be independent with Xk ∼ Bern(pk).
Let λ =

∑n
k=1 pk. Then

∑
ℓ∈Z+

|P (X = ℓ)− P (Pois(λ) = ℓ)| ≤ 2

n∑
k=1

p2k.

We first prove the Corollary:

Proof. Let S ∼ Pois(λ) Then

|P (X = ℓ)− P (S = ℓ)| = |P (X̃ = ℓ)− P (S̃ = ℓ)| = |E[1ℓ(X̃)− 1ℓ(S̃)]|
≤ E[1ℓ(X̃) + 1ℓ(S̃), S̃ ̸= X̃]

= E[1ℓ(X̃), S̃ ̸= X̃] + E[1ℓ(S̃), S̃ ̸= X̃].

Now sum over ℓ ∈ Z+ to obtain the bound.

Now let’s prove the proposition.

Proof of Proposition 4.3.1. Let (Uk : k = 1, . . . , n) be IID U[0, 1]. Define X̃k := 1[1−pk,1](Uk). There-

fore (X̃k : k = 1, . . . , n) have the same distribution as (Xk : k = 1, . . . , n). Let X̃ =
∑n

k=1 X̃k.

Next, we define a RV Ỹk ∼ Pois(pk) as follows. Let a0 = 0 and continue inductively letting
aj+1 = aj +P (Pois(pk) = j). Thus (aj : j ∈ Z+) is a strictly increasing sequence with limj→∞ aj = 1,

and P (U ∈ [aj , aj+1)) = aj+1 − aj = P (Pois(pk) = j). Let Ỹk :=
∑∞

j=0 j1[aj ,aj+1)(Uk). Then by

construction, Ỹk ∼ Pois(pk). Let S̃ =
∑n

k=1 Ỹk. Then S̃ ∼ Pois(
∑n

k=1 pk).

We were able to define both X̃k and Ỹk as functions of the same RV Uk, and we will now examine
the event on which they differ.

1. X̃k = 0 if and only if Uk ∈ [0, 1−pk] and is 1 otherwise. Now Ũk = 0 if and only if Uk ∈ [0, e−pk).
Since e−pk > 1− pk, P (X̃k = Ỹk = 0) = P (X̃k = 0) = P (Uk ∈ [0, 1− pk]) = (1− pk).

2. Now {Ỹk = 1} = {Uk ∈ [e−pk , e−pk(1 + pk))} ⊂ {Uk ∈ [1 − pk, 1]} = {X̃k = 1}. Therefore
P (X̃k = Ỹk = 1) = P (Ỹk = 1) = e−pkpk.

Putting these together, P (X̃k = Ỹk) = 1− pk(1− e−pk). Therefore P (X̃k ̸= Ỹk) = pk(1− e−pk) ≤ p2k.
Finally,

P (X̃ ̸= S̃) ≤ P (∪n
k=1{X̃k ̸= Ỹk}) ≤

n∑
k=1

P (X̃k ̸= Ỹk) ≤
n∑

k=1

p2k.
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4.4 Tightness and Weak Convergence

Next we show that weak convergence is not that hard to attain. We need a definition.

Definition 4.4.1. A sequence of Borel probability measures (Pn : n ∈ N) is tight if for every ϵ > 0,
there exists M > 0 such that infn Pn((−M,M)) ≥ 1− ϵ.

Tightness is simply the mathematical statement that no mass (probability) escapes to ±∞.

Example 4.4.1. Let (xn : n ∈ N) be a sequence of real numbers. The sequence (δxn
: n ∈ N) is

tight if and only if the sequence is bounded. Indeed, δxn
((−M,M)) = 1(−M,M)(xn). Therefore for any

ϵ ∈ (0, 1), the infimum is ≥ 1− ϵ if and only if |xn| < M for all n, in which case the infimum is 1.

Exercise 4.4.1. Show that (Pn : n ∈ N) are tight if and only if limM→∞ lim infn→∞ Pn((−M,M)) = 1.

Exercise 4.4.2. Let (Xn : n ∈ N) be RVs, and let φ : R → [0,∞] be Borel measurable satisfying
lim|x|→∞ φ(x) = ∞. Show that if lim supn→∞ E[φ(Xn)] < ∞, then the distributions of (Xn : n ∈ N)
are tight.

Tightness is a necessary condition for weak convergence.

Lemma 4.4.1. Pn ⇒ P implies that (Pn : n ∈ N) are tight.

Proof. Fix ϵ > 0. Let M1 be such that P ((−M1,M1)) ≥ 1 − ϵ/2, and let N = N(ϵ) be such that
Pn((−M1,M1)) ≥ P ((−M1,M1))− ϵ/2 for n ≥ N . Now choose M2 ≥ M1 such that Pn((−M2,M2)) ≥
1− ϵ for all n < N . Thus, Pn(−M2,M2)) ≥ 1− ϵ for all n.

The next result is a partial converse, and yet another justification for the notion of weak conver-
gence.

Theorem 4.4.1 (Helly-Bray Selection Theorem). Let (Pn : n ∈ N) be Borel probability measures on
R and (Fn : n ∈ N) their respective distribution functions.

1. There exists a subsequence (nk : k ∈ N) and a right-continuous nondecreasing function G : R →
[0, 1] such that limk→∞ Fnk

(x) = G(x) for every continuity point of G.

2. (Pnk
: n ∈ N) is tight if and only if limx→−∞ G(x) = 0 and limx→∞ G(x) = 1.

Proof. 1. By diagonalization, we can find a subsequence (nk : k ∈ N) such that limk→∞ Fnk
(x)

exists for every x ∈ Q. Denote this limit by Ḡ. Extend Ḡ to R by letting G(x) = inf{Ḡ(q) : q ∈
Q, q > x}. Note that G(q) ≥ Ḡ(q) for all q ∈ Q. Clearly G : R → [0, 1] and is nondecreasing.
Next we show that it is right-continuous. Fix any x and let ϵ > 0. Then G(x) + ϵ is not a lower
bound on {Ḡ(q) : q ∈ Q, q > x} and therefore there exists q > x such that Ḡ(q) ≤ G(x) + ϵ. But
then if y ∈ [x, q), then G(y) ≤ Ḡ(q) ≤ G(x)+ ϵ. Thus, for all y ∈ [x, q), G(x) ≤ G(y) ≤ G(x)+ ϵ.
This proves the right-continuity.

Finally, we need to show convergence at all continuity points. Let x ∈ R. By construction,
there exists a rational q > x such that Ḡ(q) ≤ G(x) + ϵ, and therefore lim supk→∞ Fnk

(x) ≤
lim supk→∞ Fnk

(q) = Ḡ(q) ≤ G(x) + ϵ. This shows that lim supk→∞ Fnk
(x) ≤ G(x). Now if x

is a continuity point, fix ϵ > 0 and let δ be such that G(x − δ) ≥ G(x) − ϵ. Pick any rational
q ∈ (x− δ, x). Then

lim inf
k→∞

Fnk
(x) ≥ lim inf

k→∞
Fnk

(q) = Ḡ(q).

But since q > x − δ, G(x) − ϵ ≤ G(x − δ) ≤ Ḡ(q), and so lim infk→∞ Fnk
(x) ≥ G(x) − ϵ. Thus

lim supk→∞ Fnk
(x) ≥ G(x).

2. Suppose that the sequence is tight. Let ϵ > 0. Pick continuity points −M1,M2 of G such that
infn Pn((−M1,M2)) ≥ 1− ϵ. Then 1− ϵ ≤ limn→∞ Fnk

(M2)− Fnk
(−M1) = G(M2)−G(−M1).

Take M1,M2 → ∞ to obtain limx→∞(G(x)−G(−x)) ≥ 1− ϵ. Since ϵ > 0 and G takes values in
[0, 1], the result follows.

Conversely, if limx→∞ G(x) = 1 and limx→−∞ G(x) = 0, then G is the distribution function
of a Borel probability measure, say P , and then the first part gives Pnk

⇒ P . Lemma 4.4.1,
completes the proof.
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4.5 Characteristic Functions

Although we have multiple equivalent characterizations of weak convergence they are not very easy to
work with, and do not offer a simple way to deal with sums of independent RVs. In this section we
discuss yet another characterization, the all-mighty characteristic function, which also addresses these
deficiencies. The characteristic function of a Borel probability measure is also known as the Fourier
transform of the measure, so you may have seen similar objects elsewhere.

Definition 4.5.1. Let P be a Borel probability measure on R. The characteristic function of P , φP

is defined as

φP (t) =

∫
eitxdP (x) =

∫
cos(tx)dP + i

∫
sin(tx)dP (x).

If X is a random variable with distribution P , then we will also write φX for φP and refer to it as the
characteristic function of X. Then

φX(t) = E[eitX ] = E[cos(tX)] + iE[sin(tX)].

As every Borel probability measure is the distribution of some RV. We will very often adopt the
second approach, namely view the characteristic function as of the RV. Let’s first observe some very
basic properties of characteristic functions.

Proposition 4.5.1. Let φ be a characteristic function of some RV X. Then

1. φ(0) = 1 and |φ(t)| ≤ 1 for all t ∈ R.

2. φ is uniformly continuous.

3. If X has a finite n-th moment. Then φ is differentiable at 0 up to the n-th order, with φk(0) =
ikE[Xk], k = 1, 2, dots, n.

We comment that the differentiability of the characteristic function at 0 does not automatically
imply that X has finite expectation. One such example is a RV satisfying P (X = ±n) = C

n2 ln(n)

for n = 2, 3, . . . , where C is a normalization constant. It is clear that X is not integrable, yet, a
straightforward calculation shows that characteristic function is differentiable at 0 wirth derivative
equal to 0.

Proof. The first statement follows directly from the definition. The second from dominated conver-
gence. Let’s look at differentiation of φ at 0.

φ(t)− φ(0) = E[
eitX − 1

t
].

From the Fundamental Theorem of Calculus (written in complex form - view it as shorthand for the
respective expression with cosines and sines):

eitX − 1 = i

∫ tX

0

eisds.

Now |eis| = 1 and therefore | e
itX−1

t | ≤ |X|. Since d
dte

itX |t=0 = iX, it follows from dominated
convergence that if X is integrable, φ′(0) exists and is equal to iE[X].

The behavior of the characteristic function near zero gives information about the tail of the RV.
In most cases, this information is more useful for qualitative analysis than for quantitative analysis,
as we will see below.

Proposition 4.5.2. Let φ be the characteristic function of X. Then for all T > 0,

P (|X| > 2/δ) ≤ 1

δ

∫ δ

−δ

1− φ(t)dt.
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Proof. The function x → sin x
x has a removable singularity at zero. Remove it to obtain a continuous

function equal to 1 at 0. First, observe that 1
2δ

∫ δ

−δ
(1− cos(tX))dt = 1− 2 sin(δX)

2δX . By taking Riemann
sums and using dominated convergence,

1

2δ
E[

∫ δ

−δ

1− cos(tX)dt] =
1

2δ

∫ δ

−δ

1− φ(t)dt.

Therefore
1

2δ

∫ δ

−δ

1− φ(t)dt = E[1− sin(δX)

δX
].

For all |x| > 2, | sin x
x | ≤ sin(2)

2 ≤ 1
2 . Therefore,

E[1− sin(δX)

δX
] ≥ E[1− sin(δX)

δX
, δ|X| ≥ 2] ≥ 1

2
P (δ|X| ≥ 2).

Thus,

P (|X| ≥ 2

δ
) ≤ 1

δ

∫ δ

−δ

1− φ(t)dt.

Corollary 4.5.1. Suppose φX(t) = 1 for all t in some open interval centered at 0. Then X = 0 a.s.

Proof. Suppose φ is equal to 1 on on (−δ, δ). Then P (|X| > 2/δ) = 0. That is X has bounded
support and in particular has finite first and second moment. But then Proposition 4.5.1-3 gives that
0 = φ′(0) = iE[X] and 0 = φ′′(0) = −E[X2]. Therefore X has both expectation and variance equal
to zero which implies X ≡ 0.

The next step is to show that the characteristic function determines the distribution. This will be
done through an inversion formula. What does “inversion” actually mean here? We need to recover
a Borel probability measure from a characteristic function. Since any Borel probability measure is
determined by the values it assigns to intervals, it is enough to find a formula that will output the
measure of every interval.

Our goal is to express indicator of an interval as a linear function of complex exponentials. We will
then take the expectation to obtain the probability of the interval. Easier said than done.

The starting point is the following calculus fact, which we won’t prove here (nice exercise though):

lim
T→∞

∫ T

0

sinx

x
dx =

π

2
.

This yields the following:

Lemma 4.5.1. Let α < β be real numbers. Then

lim
T→∞

∫ β

α

sin(Tv)

v
dv =

∫ βT

αT

sinu

u
du =


π α < 0 < β
π
2 α = 0 or β = 0

0 otherwise

(4.5.1)

Now for some manipulation that will bring us to the promised land.

sin(Tv)

v
=

eiTv − e−iTv

2iv
=

1

2

∫ T

−T

eitvdt.

Therefore, the lefthand side of (4.5.1) is equal to

lim
T→∞

1

2

∫ β

α

∫ T

−T

eitvdtdv = lim
T→∞

1

2

∫ T

−T

∫ β

α

eitvdvdt

= lim
T→∞

1

2

∫ T

−T

eitα − eitβ

it
dt

= lim
T→∞

1

2

∫ T

−T

e−itα − e−itβ

it
dt,



56 CHAPTER 4. CENTRAL LIMIT THEOREMS

where in the last step we changed variables t → −t. Taking any reals a < b and x, and letting α := a−x
and β := b− x we proved the following:

Proposition 4.5.3. Fix real a < b and x. Then

lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
eitxdt = 1(a,b)(x) +

1

2
1{a,b}(x)

All that’s left is to use this to prove the inversion formula. That’s the easiest step:

Theorem 4.5.1. Let X be a RV with characteristic function φ. Then

P (X ∈ (a, b)) +
1

2
P (X ∈ {a, b}) = lim

T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φ(t)dt.

Proof. From the proposition,

P (X ∈ (a, b)) +
1

2
P (X ∈ {a, b}) = lim

T→∞

1

2π
E[

∫ T

−T

e−ita − e−itb

it
eitXdt].

We want to move the expectation inside the integral. To do that, observe that the integral is of the

form
∫ T

−T
f(t)eitXdt, where f is a continuous function. This integral is the limit of Riemann sums.

Specifically,
1

n

∑
|kn|≤⌊T⌋

f(k/n)eik/nX .

These Riemann sums are bounded, and therefore it follows from the Dominated convergence theorem
that their expectations converge to the expectation of their limit, the integral. However, as finite sums,
and because of the linearity of the expectation, the expectation of each Riemann sum is equal to

1

n

∑
|kn|≤⌊T⌋

f(k/n)φ(k/n).

Because φ is continuous, this is a Riemann sum for the integral in the statement of the theorem.

Corollary 4.5.2. The characteristic function uniquely determines the distribution.

Proof. We provide a simple algorithm utilizing the inversion formula and which gives the CDF.

1. 1
2P (X = x) = limn→∞ P (X ∈ (x− 1

n , x))+
1
2P ({x− 1

n , x}). This is because the events {X ∈ (x−
1
n , x)} decrease to ∅ and

∑∞
n=1 P (X = x− 1

n ) converges and therefore limn→∞ P (X = x− 1
n ) = 0.

2. Similarly, P (X < x) + 1
2P (X = x) = limn→∞ P (X ∈ (−n, x)) + 1

2P ({x− 1
n , x}).

3. Now add the two.

So we know that a characteristic function determines a distribution. Next we show that weak
convergence is determined by convergence of characteristic functions. This theorem is key to our proof
of the Lindberg-Feller Central limit theorem in the next section.

Theorem 4.5.2 (Levy’s Continuity Theorem). Let (Pn : n ∈ N) be a sequence of Borel probability
measures with respective characteristic functions (φn : ninN). Then there exists a Borel probability
measure P such that Pn ⇒ P if and only if there exists a function φ(t) continuous at 0 such that
limn→∞ φn(t) = φ(t) for all t.

Proof. One direction is trivial. If Pn ⇒ P , then from the definition of weak convergence, for every
t ∈ R, φn(t) → φ(t), where φ is the characteristic function of P , and as such, is continuous at 0.

The converse requires two steps. The first is to show that (Pn : n ∈ N) (and therefore any
subsequence) is tight. To do this we use Proposition 4.5.2. Fix ϵ > 0 and pick δ > 0, so that
1
δ

∫ δ

−δ
(1−φ(t)dt < ϵ/2. This is possible because φ(0) = 1 (why?) and φ is continuous at 0. Next, pick
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N = N ∗ (ϵ, δ) such that

frac1δ
∫ δ

−δ
1−φn(t)dt ≤ 1

δ

∫ δ

−δ
1−φ(t)dt+ ϵ/2 for all n ≥ N . This is possible because of the pointwise

convergence and the dominated convergence theorem as |1− φn(t)| ≤ 2 and we are integrating over a
bounded interval. Putting both together, we have

1

δ

∫ δ

−δ

1− φn(t)dt ≤ ϵ

for all n ≥ N . By Proposition 4.5.2, Pn((−2/δ, 2/δ)c) ≤ ϵ provided n ≥ N . Decrease δ (and such
decreasing the probabilities on the lefthand side) so that this also holds for n ≥ N and set M := 2/δ.
We proved that Pn([−M,M ]) ≥ 1− ϵ for all n, thus tightness holds.

It follows that every subsequence of (Pn : n ∈ N) has a weakly convergent subsequence. But the
assumed convergence of the seqeuence of characteristic functions to φ implies that the limit along
every convergent subsequence has φ as its characteristic function, and as a result of Corollary 4.5.2,
the limit is the same for all convergent subsequences. Call it P .

Finally, let g be a bounded nonnegative and continuous function. Then lim inf
∫
gdPn is attained

along some subsequence (Pnk
: k ∈ N). Without loss of generality we may also assume that Pnk

⇒ P .
Therefore lim inf

∫
gdPn = limk→∞

∫
gdPnk

=
∫
gdP , and the weak convergence is established due to

Proposition 4.2.1.

4.6 The Normal Distribution Revisited

Recall that a random variable X is normal (Gaussian) with mean (expectation) µ and variance σ2,

denoted by X ∼ N(µ, σ2) if it has the density fX(x) = 1√
2πσ2

e−(x−µ)2/(2σ2). The special case µ = 0

and σ2 = 1 is called the standard normal distribution.

Exercise 4.6.1. Prove that if X ∼ N(µ, σ2), then the characteristic function of X, φX is given by

φX(t) = eiµt−
σ2t2

2 . (4.6.1)

We will use characteristic functions to derive the following properties of normal distributions:

Proposition 4.6.1. 1. Let X ∼ N(µ, σ2) and let Z ∼ N(0, 1). Then the distribution of X is equal
to the distribution of σZ + µ. Conversely, the distribution of Z is equal to the distribution of
(X − µ)/σ.

2. If X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2), are independent, then X1 +X2 ∼ N(µ1 + µ2, σ

2
1 + σ2

2).

Exercise 4.6.2. Prove the proposition using (4.6.1).

There are a lot of interesting properties of normal distributions, particularly when considering their
analogs in higher dimensions (normally distributed random vectors or fields).

4.7 Lindberg-Feller Central Limit Theorem

In this section we state and prove the central limit theorem. Before stating and proving the result, we
two preliminary results that will be used in the proof. The main difficulty in the proof is establishing
the existence of some limits of complex-valued objects.

Lemma 4.7.1. Let w1, . . . , wn and z1, . . . , zn be complex numbers satisfying |wj |, |zj | ≤ 1 for all
j = 1, . . . , n. Then |

∏n
j=1 wj −

∏n
j=1 zj | ≤

∑n
j=1 |wj − zj |

Proof. We prove the claim by induction on n. The base case n = 1 is trivial. We move to the induction
step, assuming the inequality holds for n, we prove it for n+ 1:

n+1∏
j=1

wj −
n+1∏
j=1

zj = wn+1

n∏
j=1

wj − zn+1

n∏
j=1

zj

= (wn+1 − zn+1)

n∏
j=1

wj − zn+1(

n∏
j=1

zj −
n∏

j=1

wj).
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Now take absolute value on both sides and apply the triangle inequality to separate the two summands
on the righthand side. Since for any complex numbers |ζ1ζ2| = |ζ1||ζ2|, we obtain

|
n+1∏
j=1

wj −
n+1∏
j=1

zj | ≤ |wn+1 − zn+1||
n∏

j=1

wj |+ |zn+1||
n∏

j=1

zj −
n∏

j=1

wj |

≤ |wn+1 − zn+1| ∗ 1 + |
n∏

j=1

zj −
n∏

j=1

wj |

≤ |wn+1 − zn+1|+
n∑

j=1

|zj − wj |

where the last line was obtained from the induction hypothesis.

The next lemma gives us bounds on the error term in the Taylor expansion of eix.

Lemma 4.7.2. Let x ∈ R. Then

|eix −
n∑

m=0

(ix)m

m!
| ≤ |x|n

n!
min(

|x|
n+ 1

, 2).

Proof. The idea is iterative application of the fundamental theorem of calculus. This is one way to prove
Taylor theorem. We will apply it specifically to the function x → eix. Clearly, eix = 1 +

∫ x

0
ieix1dx1.

Repeat to obtain

eix = 1 +

∫ x

0

i(1 +

∫ x1

0

ieix2dx2)dx1 = 1 + ix+

∫ x

0

∫ x1

0

i2eix2dx2dx1.

By induction,

eix =

n∑
m=0

(ix)m

m!
+

∫ x

0

∫ x1

0

· · ·
∫ xn

0

in+1eixn+1dxn+1 · · · dx1.

To complete the proof we need to bound the absolute value of the iterated integral on the right. We
give two different bounds, which in turn give the desired result. Both utilizing the triangle inequality
for integrals |

∫ x

0
f(x)dx| ≤ |

∫ x

0
|f(x)|dx|.

• The first bound is trivial: since |in+1eixn+1 | = 1, the absolute value of the iterated integral is
bounded above by the absolute value of iterated integral of the constant function 1, which is
equal to |x|n+1/(n+ 1)!.

• The second is also trivial. we first integrate the innermost integral to obtain∫ x

0

∫ x1

0

· · ·
∫ xn−1

0

in+1(eixn − 1)dxn · · · dx1.

Now, |in+1(eixn −1)| = | cos(xn)+ i sin(xn)−1| ≤ 1+1 = 2, and iterate this to obtain the bound
2|x|n/n!

We’re finally ready to state and prove the theorem.

Theorem 4.7.1. Suppose that for each n ∈ N, (Xn,m : m = 1, . . . , n) are independent Random
variables satisfying

1. E[Xn,m] = 0.

2. limn→∞
∑n

m=1 E[X2
n,m] = σ2 ∈ [0,∞).

3. For every ϵ > 0, limn→∞
∑n

m=1 E[X2
n,m, |Xn,m| > ϵ] → 0.

Let Zn :=
∑n

m=1 Xn,m. Then Zn,m ⇒ N(0, σ2).
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Before we prove the theorem we state the most useful corollary, the “standard” central limit theo-
rem:

Corollary 4.7.1. Let (Xn : n ∈ N) be IID with expectation µ and variance σ2 ∈ [0,∞). Let Sn :=∑n
m=1 Xm. Then

Sn − nµ√
n

⇒ N(0, σ2).

I want to repeat the statement of the central limit theorem. If we denote the expression on the

lefthand side by Zn, then we observe that it is equal to
√
n(X̄n − µ), with X̄n :=

∑n
m=1 Xm

n , the

empirical mean. That is X̄n = µ+ Zn√
n
, or X̄n is µ with a “correction” which is roughly N(0, σ2)/

√
n

(or N(0, σ2/n)).

Proof of Corollary 4.7.1. Let Xn,m := Xm−µ√
n

. Clearly the RVs (Xn,m : m = 1, . . . , n) are independent.

Also, E[Xn,m] = 0 and E[X2
n,m] = σ2

n . This gives the first two numbered conditions. As for the third,

E[X2
n,m, |Xn,m| > ϵ] = 1

nE[(X1 − µ)2, |X1 − µ| > ϵ
√
n]. Therefore

∑n
m=1 E[X2

n,m, |Xn,m| > ϵ] =
E[(X1 − µ)2, |X1 − µ| > ϵ

√
n] → 0 as n → ∞ by dominated convergence.

Proof of Theorem ??. By Levy’s continuity theorem it is enough to prove that the characteristic func-
tion of Zn, φn, converges to that of N(0, σ2). We therefore need to show that for t ∈ R,

|φn(t)− e−tσ2
n,m/2| → 0,

where σ2
m,n := E[X2

m,n]. By the triangle inequality, this will follow if we show

|φn(t)−
n∏

m=1

(1− σ2
n,mt2/2)| → 0 and (4.7.1)

|
n∏

m=1

(1− σ2
n,mt2/2)− e−σ2

n,mt2/2| → 0. (4.7.2)

To prove (4.7.1) observe that its lefthand side is equal

|
n∏

m=1

E[eitXm,n ]−
n∏

m=1

(1− σ2
n,mt2/2)| ≤

n∑
m=1

|E[eitXm,n ]− (1− σ2
n,mt2/2)|

≤
n∑

m=1

E[
X2

n,m

2
min(

|Xn,m|
3

, 2)].

On the event |Xn,m| ≤ ϵ. The minimum ≤ ϵ. On the event |Xn,m| > ϵ, the minimum is ≤ 2. Therefore

E[X2
n,m min(

|Xn,m|
3

, 2)] ≤ ϵE[X2
n,m] + E[X2

n,m, |Xn,m| > ϵ].

Taking the sum, we obtain the upper bound

ϵ

n∑
m=1

E[X2
n,m] +

n∑
m=1

E[X2
n,m, |Xn,m| > ϵ].

The second expression tends to zero by the third condition. The first tends to ϵσ2. As ϵ is arbitrary,
we established (4.7.1).

To prove (4.7.2), recall that for nonnegative c,

1− c ≤ e−c ≤ 1− c+ c2/2.

This gives |e−c − 1− c| ≤ c2/2. Taking c = σ2
n,m/2 with this we obtain the following upper bounds on

the lefthand side of (4.7.2)

n∑
m=1

|(1− σ2
n,mt2/2)− e−σ2

n,mt2/2| ≤
n∑

m=1

σ4
n,m/4.
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Now

σ2
n,m = E[X2

n,m] ≤ ϵ+ E[X2
n,m, |Xn,m| > ϵ] ≤ ϵ+

n∑
m=1

E[X2
n,m, |Xn,m| > ϵ].

For n large enough the righthand side is bounded above by 2ϵ. Therefore

lim sup
n→∞

max
m≤n

σ2
n,m ≤ 2ϵ,

which in turn implies maxm≤n σ
2
n,m → 0. Thus,

n∑
m=1

σ4
n,m/4 ≤ max

m≤n
σ2
n,m

n∑
m=1

σ2
n,m → 0× σ2.

We finished the proof.

Example 4.7.1. Let (Xn : n ∈ N) be independent with P (Xn = n) = P (Xn = −n) = 1
2 . Then

E[Xm] = 0 and Var(Xm) = m2. As a result Var(
∑n

m=1 Xm) =
∑n

m=1 m
2 ∼ n3/3. Setting Xn,m :=

Xm/n3/2, it follows that E[Xn,m] = 0 and limn→∞
∑n

m=1 E[X2
n,m] = 1

3 . In addition, E[X2
n,m, |Xn,m| >

ϵ] = 1
n3E[X2

m, |Xm| > n3/2]. If n ≥ 2, this is equal to zero for all m = 1, . . . , n. Therefore all conditions

in the theorem hold and we have
∑n

m=1 Xm

n3/2 ⇒ N(0, 1
3 ).

4.7.1 Central Limit Theorem: The Swapping Method

With slight stronger assumptions we can get much more.

Theorem 4.7.2. Let (Ym : m = 1, . . . , n) be independent, satisfying that for all m = 1, . . . , n

1. E[Ym] = 0

2. σm := E[Y 2
m] ∈ [0,∞)

3. ρm := E[|Ym|3] < ∞.

Let σ2 :=
∑n

m=1 σ
2
m, and let Sn :=

∑n
m=1 Ym. Then for every function g : R → R with bounded third

derivative, ∣∣∣E[g(Sn)]− E[g(N(0, σ2))]
∣∣∣ ≤ ∥g(3)∥∞

2

n∑
m=1

ρm.

What does the theorem mean in the IID case? Let’s suppose that (Xn : n ∈ N) are IID with mean
µ, variance σ2 ∈ [0,∞) and ρ = E[|X1|3] ∈ [0,∞). Now fix n ∈ N and set Ym := (Xm − µ)/

√
n. Then

E[Ym] = 0, E[Y 2
m] = σ2/n and E[|Xm|3] = ρ3/n3/2. Therefore σ2 in the theorem is σ2 here (sorry

about the notation!), and ρm in the theorem is ρ/n3/2. Rewriting the conclusion of the theorem:

Corollary 4.7.2. Suppose that (Xn : n ∈ N) are IID with mean µ, variance σ2 and ρ := E[|X1|3] < ∞.
Let g have bounded third derivative. Then for every n ∈ N∣∣∣E[g(

X1 + · · ·+Xn − nµ√
n

)]− E[g(N(0, σ2))]
∣∣∣ ≤ ∥g(3)∥∞

2

ρ√
n
.

Proof of Theorem 4.7.2. The key is replacing each of the Ym’s in the sum with a normal N(0, σ+m2)
one by one and estimating the error thus created. Let (Zm : m = 1, . . . , n) be independent of the Ym’s
with Zm ∼ N(0, σ2

m), defined on the same probability space as (Ym : m = 1, . . . , n), and independent
of the Y ′

ms Define Sn,0 :=
∑n

m=1 Ym, and set

Sn,k+1 = Sn,k + (Zk+1 − Yk+1).

In words, we replace Yk by Zk one by one: Sn,0 =
∑n

m=1 Ym and Sn,n =
∑n

m=1 Zm ∼ N(0, σ2).
Clearly,

E[g(Sn)]− E[g(N(0, σ2)] = E[g(Sn,0)]− E[g(Sn,n)].
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This allows us to use a telescoping technique:

E[g(Sn,0)]− E[g(Sn,n)] =

n∑
k=0

E[g(Sn,k)− g(Sn,k+1)].

The next step to estimate the differences inside this expectation. Let S̃n,k = Sn,k − Yk. Then

Sn,k = S̃n,k + Yk, Sn,k+1 = S̃n,k + Zk.

Use Taylor expansion to obtain

g(Sn,k) = g(S̃n,k) + g′(S̃n,k)Yk +
g′′(S̃n,k)

2
Y 2
k +

g(3)(S′
n,k)

6
Y 3
k .

Similarly,

g(Sn,k+1) = g(S̃n,k) + g′(S̃n,k)Zk +
g′′(S̃n,k)

2
Z2
k +

g(3)(S′′
n,k)

6
Z3
k .

Here S′
n,k, S

′′
n,k are random points, obtained from Lagrange error term in Taylor’s theorem. We there-

fore have

g(Sn,k)− g(Sn,k+1) = g′(S̃n,k)
Yk − Zk

+
g′′(S̃n,k)(Y

2
k − Z2

k) +
g(3)(S′

n,k)Y
3
k − g(3)(S′′

n,k)Z
3
k

6
.

Taking expectations and using the fact that S̃n,k is independent of both Yk and Zk, as well as the fact
that E[Yk] = E[Zk] and E[Y 2

k ] = E[Z2
k ], we have

|E[g(Sn,k)− g(Sn,k+1)]| ≤
∥g(3)∥∞

6
E[|Yk|3 + |Zk|3].

A direct calculation shows that E[|Zk|3] = 2σ3
k. Putting everything together we have

E[g(Sn)]− E[g(N(0, σ2))] ≤ ∥g(3)∥∞
6

(

n∑
k=1

E[|Yk|3] +
n∑

k=1

2σ3
k).

However, by Jensen’s inequality, σ3
k = E[Y 2

k ]
3/2 ≤ [|Yk|3], and therefore 2σ3

k ≤ 2E[|Yk|3], so the upper

bound becomes ∥g(3)∥∞
2

∑n
k=1 ρk.

The restriction of g is the theorem and the corollary was necessary to obtain the error estimate.
It does to pose any restriction when it comes to weak convergence. We record the following, which
allows to conclude that under the assumptions of the corollary, weak convergence holds.

Lemma 4.7.3. Let (Zn : n ∈ N), Z be RVs satisfying lim infn→∞ E[g(Zn)] → E[g(Z)] for every
nonnegative bounded g with bounded third derivative. Then Zn ⇒ Z.

Proof. Let U be any open set. Then U is a countable union of disjoint open intervals, say ∪∞
i=1(ai, bi).

For every N ∈ N, P (Zn ∈ U) ≥ P (Zn ∈ ∪N
i=1(ai, bi)). There exists a sequence of nonnegative

continuous functions (gm : m ∈ N) each with bounded third derivative increasing to
∑N

i=1 1(ai,bi). As
a result

P (Zn ∈ U) ≥ P (Zn ∈ ∪N
i=1(ai, bi)) ≥ E[gm(Zn)].

By by assumption lim infn→∞ E[gm(Zn)] → E[gm(Z)], and therefore, lim inf P (Zn ∈ U) ≥ E[gm(Z)].
Now take m → ∞ and apply dominated convergence to obtain lim inf P (Zn ∈ U) ≥ E[P (Z ∈
∪N
i=1(ai, bi)]. Now take N → ∞, to complete the proof.
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Chapter 5

Martingales

Martingales are a simple mathematical model for a “fair” game of chance. They turn out to be very
useful in numerous applications, and have a structure that allows to prove a rich collection of results
beyond the IID setting.

5.1 Conditional Expectations

In this section we will assume that (Ω,F , P ) is a probability space. We will use the term sub-sigma
algebra to describe a sigma algebra G ⊂ F . If X is a random variable, we write X ∈ G (poor notation,
yes) to mean that X is measurable with respect to G, namely

{X ∈ B} ∈ G

for every Borel set B (enough to check for B of the form (−∞, x] with x ∈ R or even in Q. Why?).

Definition 5.1.1. Let X be an integrable RV and let G be a sub-sigma algebra. The conditional
expectation of X with respect to G is a random variable Y satisfying the following:

1. Y ∈ G.

2. E[Y,A] = E[X,A] for every event A ∈ G.

Theorem 5.1.1. Let X and G be as in Definition 5.1.1. Then the conditional expectation of X with
respect to G exists and is unique up to events with probability zero. We denote it by E[X|G].

By taking A = Ω, we conclude that E[E[X|G]] = E[X]. What else? Can you show that E[X|G] is
integrable?

The uniqueness statement simply means that if Y and Y ′ satisfy the conditions in the definition,
then Y = Y ′ a.s. So in fact the precise way to think of the conditional expectation is as of an equivalence
class of RVs. We defer the existence proof in the theorem to the end of the chapter. The proof of
the uniquness is very simple. Suppose Y, Y ′ both satisfy the conditions, Let A+ = {Y > Y ′} ∈ G.
Then E[Y,A+] = E[Y ′, A+] and therefore E[Y − Y ′, A+] = 0. This implies P (A+) = 0. Similarly
P (Y < Y ′) = 0, and the uniqueness follows.

The uniqueness automatically gives us linearity. We record this as a result:

Proposition 5.1.1. Let X1, X2 be integrable RVs and let G be a sub-sigma algebra. Then for every
c ∈ R,

E[X1 + cX2|G] = E[X1|G] + cE[X2|G2].

Again, the precise statement here is the anything in the lefthand side is equal to anything on the
righthand side.

Proof. Let Yj := E[Xj |G], j = 1, 2. Clearly the RV Y1 + cY2 ∈ G. Also, for every A ∈ G, the
linearity of the expectation gives E[Y1+ cY2, A] = E[Y1, A]+ cE[Y2, A]. The righthand side is equal to
E[X1, A]+cE[X2, A] = E[X1+cX2, A], again by linearity. Therefore, Y1+cY2 satisfies both conditions
in the definition of conditional expectation of X1 + cX2.

63
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Example 5.1.1. Let U ∼ U[0, 1], and let p ∈ (0, 1). Let Gp := σ({U ≤ p}). What is E[U |Gp]? First
Gp has four elements: {∅, {U ≤ p}, {U > p},Ω}. Therefore, any Gp-measurable RV Y takes at most
two distinct values and can be written as Y = y11{U≤p} + y21{U>p}. Since

E[Y,U ≤ p] = y1P (U ≤ p) = y1p, and E[Y,U > p] = y2(1− p),

and since

E[U,U ≤ p] =

∫ p

0

udu =
p2

2
, E[U,U > p] =

∫ 1

p

udu =
1− p2

2
,

it follows that Y = E[U |Gp] if and only if y1 = E[U,U ≤ p] = E[U |U ≤ p] and y2 = E[U |U > p]. The
respective numerical values are p/2 and (1 − p)/2, respectively but this is not so important. What is
important? The value of E[Y |Gp] on each of the two disjoint events generating Gp is the expectation
of U , conditioned to be on the event. Note, however, that the conditional expectation is a random
variable.

Let’s record some basic properties of conditional expectation.

Proposition 5.1.2. 1. (positivity) If X ≥ 0, E[X|G] ≥ 0.

2. (invariance) If X ∈ G, E[X|G] = X.

3. (independence) If X is independent of G, then E[X|G] = E[X].

4. Let Z ∈ G. If ZX is integrable, then E[ZX|G] = ZE[X|G].

5. (tower) Let H ⊆ G be a σ-algebra. Then E[E[X|G]|H] = E[X|H].

Note that in particular if c is a constant (viewed as a RV), E[c|G] = c.

Exercise 5.1.1. Prove the the first three items in the proposition.

Proof. We only prove the last two statements. By linearity we may assume that both Z and X are
nonnonegative, Let (φn : n ∈ N) be simple and increasing to Z. Write φn =

∑
ck1Ak

. Then

E[φnE[X|G], A] =
∑

ckE[X|G, A ∩Ak]

=
∑

ckE[X,A ∩Ak] = E[X
∑
k

ck1Ak
, A]

= E[Xφn, A].

By monotone convergence, the righthand side converges to E[XZ,A] and the lefthand side converges
to E[ZE[X|G], A].

To prove the last property, Let Y := E[X|G]. Then by definition, E[Y,A] = E[X,A] for all
A ∈ G. As H ⊆ G, this holds for all A ∈ H. For such A, the definition of E[X|H] gives, E[X,A] =
E[E[X|H], A]. Therefore reading the equalities from left to right we have

E[Y,A] = E[E[X|H], A], A ∈ H.

As E[X|H] ∈ H, we have proved that E[Y |H] = E[X|H]].

Corollary 5.1.1. Let X be integrable. Then E[|X| |G] ≥ |E[X|G]|.

Proof. The RV |X|±X is nonnegative and therefore E[|X|±X|G] ≥ 0. Thus E[|X| |G] ≥ ±E[X|G].

Let’s do another simple example.

Example 5.1.2. Let X1, . . . , Xn be IID with finite expectaion and let Sn :=
∑n

k=1 Xk. What is
E[X1|Sn]? For any statement on Sn, namely an event in σ(Sn) we have that E[X1, A] = E[X2, A] =
· · · = E[Xn, A]. Since these add up to E[Sn, A], and E[Sn|σ(Sn)] = Sn (why?), it follows that
E[X1, A] =

1
nE[Sn, A]. Therefore E[X1|Sn] =

Sn

n .
Next, what is E[Sn|X1] ? This is easier: X1 + (n− 1)E[X1]. Why?
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If you follow closely, key properties that hold for the expectation as linearity, positivity and the
triangle inequality carry over to conditional expectation. Let’s get some more of these. This is just a
sample.

Proposition 5.1.3. Let X be an integrable RV.

1. (Conditional Markov’s Ineqaulity) Suppose that X is nonnegative. Then for every x > 0,

E[1{X≥x}|G] ≤ E[X|G]
x .

2. (Conditional Jensen’s inequality) Let φ be convex. If φ(X) is integrable, then E[φ(X)|G] ≥
φ(E[X|G])

Proof. As x1{X≥x} ≤ X, the first statement follows from the positivity of the conditional expectation.
As for the second, recall (see, Assignment #2 Problem #5), that for φ(b) ≥ φ(a) + (b− a)φ′(a+). So
far so good. Now we can try to take conditional expectation of both sides of

φ(X) ≥ φ(E[X|G]) + (X − E[X|G])φ′(E[X|G]+)︸ ︷︷ ︸
=:Z

,

alas, the righthand side has elements which may not be integrable and so we cannot use any of the
previous results. So fix M and let XM := X when |X| ≤ M and 0 otherwise. Now,

φ(XM ) ≥ φ(E[XM |G]) + (XM − E[XM |G])φ′(E[XM |G]+)︸ ︷︷ ︸
=:ZM

.

As everything is bounded on both sides, we can take conditional expectations to and apply Proposition
5.1.2-1,4 to the first term and second term on the righthand side, respectively, to obtain

E[φ(XM )|G] ≥ φ(E[XM |G]) + ZME[(XM − E[XM |G])|G] = φ(E[XM |G]) + ZM ∗ 0.

Note that we have used the first part of the proposition to obtain the zero in the last equality. Next,

|E[X|G]− E[XM |G]| ≤ E[|X|1{|X|>M |}|G].

Taking expectations on both sides and lettingM → ∞, we obtain E[XM |G] → E[X|G] in probability as
M → ∞. Similarly limM→∞ E[φ(XM )|G] converges in probability to E[φ(X)|G]. Take a subsequence
along which both converge a.s. and the result follows.

We now discuss an important and concrete example of a conditional expectation in a case we can
prove its existence trivially. We recall the “undergraduate” conditional expectation. If G is any event
with P (G) > 0, we define(d) E[X|G] as E[X,G]/P (G). In our language, this is simply the expectation
of X with respect to the conditional probability measure P (· |G) from Definition 1.2.3.

Proposition 5.1.4. Suppose that Ω is the disjoint union of the events (Gn : n ∈ N), and let G :=
σ((Gn : n ∈ N)) be the sub-sigma algebra generated by the sequence. Let X be an integrable RV. Define

yn :=

{
E[X|Gn] P (Gn) > 0

0 otherwise.

Then E[X|G] =
∑∞

n=1 yn1Gn
.

Proof. Any event in G is a union of some (possibly none) elements in the sequence (Gn : n ∈ N). Let
A be such an event. Then A = ∪n∈IGn for some subset I of N. Let I ′ = {n ∈ I : P (Gn) > 0}. Then

E[X,A] =
∑
n∈I′

E[X,Gn]

=
∑
n∈I′

E[X|Gn]P (Gn)

=
∑
n∈I

E[yn1Gn]

= E[

∞∑
n=1

yn1Gn
, A].

This completes the proof.
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The next useful result is monotone convergence.

Proposition 5.1.5 (Conditional Monotone Convergence). Let (Xn : n ∈ N) be nonnegative integrable
RVs increasing to X. Then limn→∞ E[Xn|G] = E[X|G] a.s.

Proof. Let Yn := E[Xn|G]. Then (Yn : n ∈ N) increases to some RV Y . Let A ∈ G. By monotone
convergence, E[Yn, A] → E[Y,A]. However, E[Yn, A] = E[Xn, A] and by monotone convergence the
righthand side tends to E[X,A]. Therefore E[Y,A] = E[X,A], and the proof is complete.

5.2 Martingales

Throughout this section we fix a probability space (Ω,F , P ). In this context, a sub-sigma algebra G is
any subset of F which is itself a sigma-algebra.

We need a bunch of definitions. At this stage it is good to recall that N = {1, 2, 3, . . . } is the set
of (strictly) positive integers and Z+ = {0, 1, 2, . . . } is the set of nonnegative integers.

Definition 5.2.1. 1. A stochastic process (AKA process) X is a sequence of RVs indexed by Z+,
X := (Xn : n ∈ Z+). We say that X is integrable if E[|Xn|] < ∞ for all n ∈ Z+.

2. A filtration F is a nondecreasing sequence of sub-sigma algebras F := (Fn : n ∈ Z+). That is

F0 ⊆ F1 ⊆ · · · ⊆ F .

3. The stochastic process X is adapted to the filtration F if for all n ∈ Z+, Xn ∈ Fn. That is
{Xn ∈ B} ∈ Fn for all Borel sets B and n ∈ Z+.

When discussing stochastic processes it is very often a good idea to view them as describing
evolution of some random system in time, where Xn represents the state of the system at time n ∈ Z+.
Let X be any process, and define Fn := σ(X0, X1, . . . , Xn). The resulting filtration F := (Fn : n ∈ Z+)
is called the natural filtration for X. We will often work with it.

Definition 5.2.2. Let M be an integrable process adapted to the filtration F. We say that M is a
martingale (resp. sub-martingale, super martingale) if E[Mn+1|Fn] = Mn (resp. ≥, ≤) for all n ∈ Z+.

That is, a martingale has successive conditional expectations that are constant. When F is the
natural filtration, the martingale condition simply means that the expected value in the next time unit
given the entire history is the current value of the process. One very simple example is when Mn is
the partial sum of IID RVs with expectation zero.

Before moving on, let’s record some basic properties.

Proposition 5.2.1. Let M be an integrable process, adapted with respect to F and let φ be a convex
function, satisfying φ(M) := (φ(Mn) : n ∈ Z+) is integrable. Then φ(M) is a sub-martingale if one
of the following conditions holds:

1. M is a martingale.

2. M is a sub-martingale and φ is nondecreasing.

Note that the conditions listed are sufficient, not necessary.

Exercise 5.2.1. Prove the proposition.

Example 5.2.1. Consider:

1. A martingale M with E[M2
n] < ∞ for all n ∈ Z+. The (M2

n : n ∈ Z+) is a sub-martingale.

2. a sub-martingale M and let φ(x) := (x− a)+ = max(x− a, 0). This is a non-decreasing convex
function and |φ(x)| ≤ |x|+ |a|, and therefore ((Mn − a)+ : n ∈ Z+) is a sub-martingale.
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5.2.1 Some Concrete Martingales

Conditional Expectations

Let X be an integrable random variable and let F be a filtration. Then Mn := E[X|Fn] is a martingale.
Indeed,

E[Mn+1|Fn] = Mn

by the tower property. What can we say about (Mn : n ∈ Z+)? Does it converge? To what? We will
answer this in Assignment #5.

Partial Sums

Let (Xn : n ∈ N) be a sequence of RVs. Set S0 to be a constant (hence measurable with respect to any
sub-sigma algebra) and for n ∈ N, let Sn := S0 +

∑n
k=1 Xk. Consider the process S := (Sn : n ∈ Z+),

equipped with the natural filtration.

• When is S a martingale? Clearly, E[Sn+1|Fn] = Sn + E[Xn+1|Fn]. Therefore S is a martingale
if and only if E[Xn+1|Fn] = 0 for all n ∈ Z+. For example, if (Xn : n ∈ N) are all independent
with mean zero.

• Similarly, S, would be a sub-martingale if the E[Xn+1|Fn] ≥ 0 for all n ∈ Z+, for example if
(Xn : n ∈ N) are independent with nonnegative means (not necessarily all the same).

Let’s go back to the general setup. There’s a nice way to “center” S so we obtain a martingale by
subtracting some process. Let’s see how. Suppose that D = (Dn : n ∈ Z+) is a process such that
(Sn −Dn : n ∈ Z+) is a martingale. Then

E[Sn+1 −Dn+1|Fn] = Sn −Dn.

Equivalently,
E[Sn+1 − Sn|Fn] = E[Dn+1|Fn]−Dn.

By construction, the lefthand side is equal to E[Xn+1|Fn], and to make the righthand side less am-
biguous, let’s assume for the moment that Dn+1 ∈ Fn. In this case, we necessarily have Dn+1 −Dn =
E[Xn+1|Fn], which results in Dn = D0 +

∑n
k=1 E[Xk|Fk−1]. If we let D0 := 0, and define

Mn := Sn −Dn, n ∈ Z+,

then rewriting the equations above we conclude that M = (Mn : n ∈ Z+) is a martingale. We actually
proved the following:

Proposition 5.2.2. Let (Xn : n ∈ N) be integrable RVs. Define the partial sums process S as follows.
Set S0 to be some constant, and define Sn := S0+

∑n
k=1 Xk, n ∈ N. Let F denote the natural filtration

for S. Then the process D = (Dn : n ∈ Z+), given by

D0 := 0, Dn :=

n∑
k=1

E[Xk|Fk−1], n ∈ N.

is the unique process satisfying all of the following conditions:

1. D0 = 0

2. Dn+1 ∈ Fn for all n ∈ Z+.

3. (Sn −Dn : n ∈ Z+) is a martingale.

As an example, let’s suppose that (Xn : n ∈ N) are IID with expectation µ. Then Dn = nµ and
so, Sn − nµ is a martingale. Ok, so what about (S2

n : n ∈ N) in this case? Let’s further assume µ = 0,
so that S is a martingale. We have

E[S2
n+1|Fn] = E[(Sn +Xn+1)

2|Fn]

= S2
n + 2Sn0 + E[X2

n+1] ≥ S2
n.
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Therefore (S2
n : n ∈ Z+) is a submartingale. Similar analysis reveals that the process M = (Mn : n ∈

Z+)

Mn := S2
n −

∑
1≤k≤n

E[X2
k ], n ∈ Z+

is a martingale. In other words, the sub-matringale (S2
n : n ∈ Z+) has a representation of the form

S2
n = Mn +

∑
1≤k≤n

E[X2
k ],

a martingale plus a non-decreasing process. As we will see later, any submartingale has a decomposition
as a sum of a martingale and a non-decreasing process (both may be random!).

“The” Martingale

Here’s a game we’re playing. Each round you bet some nonnegative amount b on Heads. I toss a fair
coin. If it lands Heads, I pay you b. If it lands Tails, you pay me b. We repeat. Is there a way for
you to guarantee a win? Let’s first analyze. If bn is the amount you bet in the n-th round, then your
net gain after that round is bn or −bn, each with probability 1

2 . Letting (Xn : n ∈ N) be IID with
P (Xn = 1) = P (Xn = −1) = 1

2 , then your net gain after n rounds, Mn, is given by

M0 = 0, Mn =

n∑
k=1

bkXk =

n∑
k=1

bk(Sk − Sk−1), n ∈ N,

where S0 := 0 and for n ∈ N, Sn :=
∑n

k=1 Xk. Let F be the natural filtration for S = (Sn : n ∈ Z+).
When is the process M := (Mn : n ∈ Z+) a martingale? Let’s see.

E[Mn+1|F = n] = Mn + E[bn+1Xn+1|Fn].

It we could “pull out” bn+1, then the fact that Xn+1 is independent of Fn, to conclude that M is a
martingale. We can do that if bn+1 ∈ Fn. Namely, the amount we bet depends only on the events
prior to the coin toss following the bet. Very reasonable! We can only bet based on what we’ve seen,
not what hasn’t happened yet... One concrete example is bn = 1 for all n ∈ N. But there many other
choices.

Thus, in what follows we will assume that bn ∈ Fn−1 for all n ∈ N, in which case M is a martingale.
In particular, E[Mn] = 0 for all n ∈ N. Is it a fair game then?

Not quite. There is a way for you to pick (bn : n ∈ N) so that you guarantee a win no matter what.
Pick b1 := 1, and continue inductively,

bn+1 =

{
2bn Xn = −1

0 Xn = 1 or Mn > 0.

In words: if you lose, you keep doubling the bet, until you win for the first time and then you don’t bet
anything, effectively exiting the game. This betting system is called the martingale (what martingales
are named after).

Let’s find your net gain with this betting system. There are two cases to consider:

1. X1 = 1, so M1 = 1, and so b2 = b3 = · · · = 0, that is, you exit the game after one round with
net gain 1.

2. X1 = −1. Your keep losing until round N , the first satisfying XN = 1. Your net gain at the
conclusion of round N is then −1 − 21 − 2(N−2) for rounds 1, . . . , N − 1 which you lost, plus
2N−1 for game N which you won. Add these two together, to get a net gain of 1. After the N -th
round you keep betting 0, effectively existing the game.

Bottom line: You can guarantee a net gain of 1. Note that there’s some interesting discrepency. While
E[Mn] = 0 for all n, Mn = 1 for all n ≥ N . In particular E[MN ] = 1. So the game is not fair.

Not quite. To be able to implement this strategy, you need to bet a total of 1+2+· · ·+2N−1 = 2N−1.
This amount has to come from somewhere. The random variable N is a Geometric RV with parameter
1
2 , and therefore the expected value of the amount you need to bet to guarantee a win is E[2N−1] = ∞.
Why is this expectation relevant? If you want to replicate this game n times, then the law of large
numbers says that the amount you’ll need to bet per game until a win will eventually exceed your
fortune, so eventually... you’ll go bankrupt playing the game.
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Polya’s Urn

An urn initially contains r red balls and g green balls. Each unit of time we sample a ball from the urn
uniformly, and return it along with an extra ball of the same color. Let Rn denote the proportion of
red balls in the urn after the n-th sample (meaning R0 := r

r+g , as we haven’t sampled yet). As usual,

let’s consider the natural filtration for the model. We will show that (Rn : n ∈ Z+) is a martingale.
Let Sn denote the number of red balls in the urn after the n-th sample, then Sn = r +

∑n
k=1 Ik,

where Ik is the indicator of k-th sample was red. Now because Fk is a finite sigma-algebra, we can
calculate the conditional expectation E[Ik|Fk−1] quite easily. Note: we’re cheating and will calculate
E[Ik|Sk−1] instead. Let’s find E[Ik|Sk−1 = ρ]. Conditioning on Sk−1 = ρ ( note: number of balls in
the urn at the same time is ρ/(r + g + k − 1)), the probability of Ik = 1 is ρ/(r + g + (k − 1)), and
Ik = 0 with the remaining probability. Therefore, E[Ik|Sk−1 = ρ] = ρ/(r+ g+ k− 1). In other words,

Sn −
∑n

k=1 Sk−1/(r + g + (k − 1)) is a martingale. In other words, (r + g + n)Rn −
∑n−1

k=0 Rk is a
martingale. Let’s see what this means,

E[(r + g + n+ 1)Rn+1 −
n∑

k=0

Rk|Fn] = (r + g + n)Rn −
n−1∑
k=0

Rk].

Or, after moving
∑n

k=0 Rk, which is Fn-measurable to the righthand side, and taking care of the
resulting cancellations:

E[(r + g + n+ 1)Rn+1|Fn] = (r + g + n)Rn +Rn,

Divide both sides by (r + g + n) to obtain E[Rn+1|Fn] = Rn. That is (Rn : n ∈ Z+) is a martingale.
Note that Rn is not a partial sum of RVs, despite the fact that we proved that it is a martingale

by using techniques for partial sums.

Exercise 5.2.2. Show directly that (Rn : n ∈ Z+) is a martingale.

Branching Process

At time zero we have a population of, say, 1. We continue inductively. Each member of population
at time n gives birth to a random number of individuals with some fixed distribution, independent
of anything else, and dies. The population at time n + 1 is the sum of all these individuals. More
precisely,

Z0 := 1, Zn+1 =

Zn∑
k=1

Bn+1,k,

where (Bm,k,m, k ∈ N) are IID Z+-valued RVs. Note that if Zn = 0, then Zn+1 = 0. That simple.
Let’s assume E[B1,1] = µ ∈ (0,∞). By conditioning on Zn, we obtain

E[Zn+1|Fn] = µZn.

Therefore a quick calculation reveals that (Zn/µ
n : n ∈ Z+) is a martingale. Clearly, (Zn : n ∈ Z+) is

a martingale. Though the analysis is similar to what we would do for products of independent RVs,
the structure is very different.

5.2.2 The Martingale Transform

We define a discrete version of an integral where the integration is with respect to a martingale, a
sub-martingale or a super-martingale. One key property of this operation is that it allows to create
new (sub- or super-) martingales from existing ones, and among other benefits, will allows us to control
them. We already introduced a special version of it in the previous section when we described the
gambling system.

Definition 5.2.3. Let F := (Fn : n ∈ Z+) be a filtration, and M := (Mn : n ∈ Z+) an adapted
process, and H := (Hn : n ∈ N) a integrable process satisfying Hn ∈ Fn−1 for all n ∈ N. The integral
transform of H with respect to M is the process H ·M defined as follows:

(H ·M)0 := 0, (H ·M)n :=

n∑
k=1

Hk(Mk −Mk−1).
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You can think of this as the analog of an integral of the form “
∫ n

0
HdM”. An intuitive way to parse

this integral transform is as follows. Mn represents the value of a stock at the end of the n-the trading
period, and Hn represents the number of stocks purchased at the beginning of the n-th trading period,
and therefore can only depend on information from the previous trading periods. If at the beginning
of the n-the trading period we purchase Hn units of stocks at the price Mn−1, then sell them at the
end of the period, our net gain at the end of the period is Hn(Mn −Mn−1). Our net gain from the
first n periods is then (H ·M)n =

∑n
k=1 Hk(Mn −Mn−1). The key observation is the following:

Proposition 5.2.3. Let F,M and H be as in definition 5.2.3. Suppose that supn |Hn| < ∞ a.s. Then

1. If M is a martingale, H ·M is a martingale.

2. If Hn ≥ 0 for all n ∈ N and M is a sub- or super-martingale then H · M is sub- or super-
martingale, respectively.

5.2.3 Stopping Times

Stopping times are Z+∪{∞}-valued random variables which have an adaptability property. A stopping
time should be viewed as a time representing the appearance of some event, like winning (or going
bankrupt) in a game of chance. A key observation allowing to control martingale is the fact that a
(sub- or super-) martingale frozen after a stopping time remains a martingale. This allows to control
martingales and prove convergence and other results.

Definition 5.2.4. Let F be a filtration. A random variable T taking values in Z+ ∪ {∞} is called a
stopping time if for all n ∈ Z+, {T ≤ n} ∈ Fn.

Example 5.2.2. Let M be a process equipped with its natural filtration.

1. T := 10 is a stopping time, because {T ≤ n} is either empty of Ω, events which belong to any
σ-algebra.

2. T := inf{n ∈ Z+ : Mn ≥ 0}, the first time Mn is nonnegative, is also a stopping time. Indeed,
{T ≤ n} = {T > n}c = ∩n

k=0{Mk < 0}, a finite intersection of events in Fn.

3. Let T be as before and define S := inf{n > T : Mn < 0}, the first time after T the process is
strictly negative, is also a stopping time. This requires a more elaborate proof. As before, we look
at the complement of {S ≤ n}.

{S > n} = {T > n} ∪ {T ≤ n, S > n}.

The first event is in Fn. We turn to the second. We write it as a union.

{T ≤ n, S > n} = ∪n
k=0{T = k} ∩ (∩n

l=k{Ml ≥ 0}).

Again, this is a union of intersections of events in Fn.

4. Let’s suppose M0 = 0 and let T := max{n ≤ 10 : Mn ≤ 0}. That is, T is the last time before
time n the process is nonnegative. The event T = 1 is then {M1 ≥ 0} ∩ (∩1

k=20Mk < 0}. With
the exception of some freak processes, this is not an event in F1. Think about it. By observing
the process up to time 1 you cannot tell if that was the last time it was nonnegative. You simply
have no sufficient information...

Note the following simple observation.

Proposition 5.2.4. Let F be a filtration and let T be a Z+ ∪{∞}-valued random variable. Then T is
a stopping time if and only if {T = n} ∈ Fn for all n ∈ Z+.

Exercise 5.2.3. Prove the proposition.

Here are some very easy and basic properties of hitting times.

Proposition 5.2.5. 1. For any constant c, T := c is a stopping time.
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2. If T and S are stopping times, then T + S is a stopping time.

3. If (Tn : n ∈ N) are stopping times, then infn Tn and supn Tn are stopping times.

Exercise 5.2.4. Prove the Proposition.

Suppose that M is adapted to the filtration F. For a borel subset B of R define τB , the hitting
time of B as follows:

τB := inf{n ∈ Z+ : Mn ∈ B}.

Then τB is a stopping time. Indeed, for every n ∈ N, {τB > n} = ∩n
k=0{Mn ∈ Bc} ∈ Fn.

Stopped Processes

In this section we fix a filtration F, an adapted process M and an a.s. finite stopping time T

Definition 5.2.5. The stopped process MT := (MT
n ∈ Z+) is the process defined by MT

n := MT∧n,
n ∈ Z+.

Thus MT is basically the process M, but frozen at time T . An example would be the following: M
describes the net gain of a player in some game of chance and T is the time the player quits the game
(e.g. whenever my net gain is negative). So the net gain remains constant remains constant after the
player quits the game.

Proposition 5.2.6. If M is a (sub- or super-) martingale so is MT .

The proof is a simple application of the integral transform.

Proof. Let Hm := 1{T≥m}. By Proposition 5.2.3 the process M0 + H · M is then a (sub- or super-)
martingale. However, this process is equal to

M0 +
∑

1≤k≤n

Hk(Mk −Mk−1) = M0 +
∑

1≤k≤T∧n

(Mk −Mk−1) = MT∧n.

Let’s put this into use.

Example 5.2.3 (Simple Symmetric Random Walk). Let X ∈ Z, (Xn : n ∈ N) IID with P (X1 =
1) = P (X1 = −1) = 1

2 . Define the simple symmetric random walk on Z starting from x as the process
S = (Sn : n ∈ Z+) with Sn := x+

∑
k≤n Xk. Then S is a martingale.

For y ∈ Z, define
Ty := inf{n ∈ Z+ : Sn = y},

the hitting time of {y}.
Now pick a, b ∈ Z with a < x < b, and define Ta,b = Ta ∧ Tb. We first show that P (Ta,b < ∞) = 1.

Let L > b − a. Therefore for every n, on the event An,L := {Xn = Xn+1 + · · · +Xn+L = 1}. Then
on An,L, Sn+L − Sn > (b − a). In particular, {Ta,b = ∞} ∩ ∪∞

k=1AkL,L = ∅. But P (∪∞
k=1AkL,L) =

1− P (∩∞
k=1A

c
kL,L) = 1− (1− 2−L)∞ = 1. Thereforfe, P (Ta,b = ∞) = 0.

With this let’s consider the martingale STa,b . As Ta,b < ∞ a.s. we have that limn→∞ STa,b∧n =
STa,b

a.s. But since a < STa,b
≤ b, it follows that |STa,b

| ≤ |a| + |b|, and it follows from dominated
convergence that limn→∞ E[STa,b∧n] = E[STa,b

]. Now, because of the martingale property, the lefthand
side is equal to E[S0] = x. In other words,

x = E[STa,b
].

But the righthand side is aP (Ta,b = Ta) + bP (Ta,b = Tb). Let α := P (Ta,b = Ta) = P (Ta < Tb). Then
have x = αa+ (1− α)b. Doing the algebra, we obtain

P (Ta < Tb) =
b− x

b− a
. (5.2.1)
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Next, let’s find E[Ta,b]. Clearly, (S
2
n−n : n ∈ Z+( is a martingale, Therefore so is (S2

Ta,b∧n−Ta,b∧n :

n ∈ Z+). In particular,
E[S2

Ta,b∧n]− E[Ta,b ∧ n] = x2,

(the righthand side obtained by taking n = 0). Rewriting, we have

E[Ta,b ∧ n] = E[S2
Ta,b∧n]− x2.

Now take n → ∞, and apply monotone convergence to the lefthand side and dominated convergence to
the righthande side (S2

Ta,b∧n ≤ a2 + b2), to conclude

E[Ta,b] = E[S2
Ta,b

]− x2.

The expectation on the righthand side is equal to a2P (Ta < Tb) + b2P (Tb < Ta), and therefore, using
(5.2.1), we conclude that the righthand side is a quadratic polynomial of x with leading coefficient equal
to −1. Yet, if x = a or x = b, the lefthand side is equal to 0. Therefore we proved:

E[Ta,b] = (x− a)(b− x) (5.2.2)

Long live martingales.

5.3 Doob’s Upcrossing and Convergence

The next topic we will discuss is a.s. convergence. This is all based on a clever observatrion and the
integral transform. Let M be a process adapted to F. Let a < b be real numbers. Define T0 := −1
and define inductively a sequence of stopping times as follows:

T2k+1 := inf{n > T2k : Mn ≤ a}, k ∈ Z+T2k+2 := inf{n > T2k+1 : Mn ≥ b}, k ∈ Z+

That is, T1 is the first time M is less than or equal to a, T2 is the first time after T1 that the process
crosses the interval [a, b], and so on. We define Un, the number of upcorssings of [a, b] up to time n as

Un := max(sup{k : T2k ≤ n}, 0). (5.3.1)

Our first goal is get upper bounds on the expectation of Un. This will be used control the oscillations
of M, and eventually resulting in a convergence result. We have the following:

Theorem 5.3.1 (Doob’s Upcrossing Inequality). Let M be a submartingale, a < b real numbers. Let
Un be as in (5.3.1). Then

E[Un] ≤
E[(Mn − a)+]− E[(M0 − a)+]

b− a
.

In other words, the number of upcrossings can be controlled by the expected value of (Mn − a)+.
We will put that in use very soon, but let’s first prove this beautiful result.

Proof. The first step is a reduction. The sequence of times (Tl : l ∈ Z+) is not changed if we replace
M and a, b by M − a and 0, b − a, respectively. The same applies if we replace the submartingale in
the latter by the submartingale (M− a)+, Proposition 5.2.1. We will therefore proceed working with
the latter, which wed denote by M̄ .

Hm :=

∞∑
k=0

1{T2k+1<m≤T2k+2}, m ∈ N.

Each of the events in the indicators we sum over is an intersection of two events in Fm−1. Therefore
H ·M is a sub-martingale. We have

(Mn − a)+ − (M0 − a)+ := (H · M̄)n + ((1−H) · M̄)n.

As both summands on the righthand side are sub-martingales equal to zero at n = 0, taking expectation
we have

E[(Mn − a)+]− E[(M0 − a)+] := E[(H · M̄)n] + E[((1−H) · M̄)n] ≥ E[(H · M̄)n] + 0.
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Where the inequality was obtained by replaced the expectation at time n with the expectation at tome
0. In addition, (H˙̄M)n ≥ (b − a)Un, because each completed upcrossing contributes at least (b − a).
For incomplete or between the completion of an upcorssing and before the beginning of a new one, the
contribution is always nonngative, and so E[(H · M̄)n] ≥ (b− a)E[Un], completing the proof.

Theorem 5.3.2 (Doob’s Sub-Martingale Convergence Theorem). Let M be a sub-martingale satisfying
supn∈Z+

E[(Mn)+] < ∞. Then limn→∞ Mn exists a.s. and is an integrable RV.

Proof. (Mn : n ∈ Z+) converges in the extended real line if and only if lim infMn = lim supMn. The
negation of this statement is lim infMn < lim infMn. Equivalently, there exists some rationals a < b
such that lim infMn < a and lim supMn > b. Implying that for some rational a, b, M upcrosses [a, b]
infinitely many times. We show that the latter event has probability zero. It is enough to show that
if a < b are rationals, the number of times the process upcrosses [a, b] is finite a.s.

The proposition implies that E[Un] ≤ E[(Mn − a)+]/(b − a). However, Mn − a ≤ Mn + |a|, and
because the function x → x+ is nondecreasing and x ≤ x+ for all x, we have (Mn−a)+ ≤ (Mn+|a|)+ ≤
(Mn)++ |a|. Now let U∞ := limn→∞ Un, the number of upcrossings of the interval [a, b]. By monotone

convergence E[U∞] = limn→∞ E[Un] ≤ sup E[(Mn)+]+a
b−a < ∞. Therefore U∞ < ∞ a.s.

We therefore proved that limn→∞ Mn exists a.s. in the extended sense. Denote the limit by M∞.
By Fatou, lim infn→∞ E[(Mn)+] ≥ E[(M∞)+]. In addition, E[Mn] = E[(Mn)+]−E[(Mn)−] ≥ E[M0].
Therefore, E[(Mn)−] ≤ E[(Mn)+] − E[M0], applying Fatou again, we conclude that E[(M∞)−] <
∞.

The first application is the following:

Corollary 5.3.1. Let M be a nonnegative super-martingale. Then limn→∞ Mn exists a.s.

Proof. Let −M is a non-positive sub-martingale and hence its positive part is identically zero. The
result follows from the Theorem.

Now for some examples. The first two were introduced in Section 5.2.1

Example 5.3.1 (Polya’s Urn). We saw that Rn, the proportion of Red balls after n samples, is a
martingale. Since Rn ≤ 1, it follows from the theorem that it converges a.s. One interesting observation
is that unlike the law of large numbers, the limit is not a constant (unless initially all balls in the urn
are of the same color).

Example 5.3.2 (Branching Processes). Recall that µ is the expected number of birth for an element
of the population and that Xn is the size of the population in generation n. We saw that Xn/µ

n is a
martingale.

Suppose that µ is either < 1 (the critical regime) or = 1 (the subcritical regime). In the latter case
we will exclude the case that a member of the population has exactly one birth with probability 1.

Since Xn/µ
n is automatically a nonnegative super-martingale, it converges almost surely (this is

true for all positive values of µ). In the subcritical case, the denominator converges to zero, and
therefore the ratio has a limit if and only if the numerator tends to 0. But as Xn is integer valued,
it tends to zero if and only if it is eventually equal to zero. Therefore, the process hits 0 a.s. (and
stays there forever). In the critical case limn→∞ Xn exists a.s. Since the process is integer valued, the
convergence means that it remains constant eventually, or, there exits c ∈ Z+ and n ∈ Z+ such that
Xn+m = c for all m ∈ Z+. But for c ̸= 0, and for any n ∈ N, the event ∩∞

m=0{Xn +m = c} implies
that each of the c elements in the n-th generation has exactly one birth, and then again for each of the
c elements in the n + 1’th generation, etc. In other words it an infinite intersection of independent
events, all with the same probability which is < 1. In other words, the event has probability zero. This
leave c = 0 as the only candidate for the limit.

5.4 Optional Stopping

Proposition 5.2.6 guarantees that a stopped (sub- or super-) martingale remains as such. Optional
stopping goes one step beyond. Let’s assume for the sake of the discussion that M is a martingale
and so, the proposition implies that the stopped process MT is also a martingale. What else can
we ask for? A closure, intuitively, including the “last time” n = ∞ to our stopped martingale, and
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making the resulting process indexed by Z+ ∪ {∞} a martingale. Specifically, a result of the form
E[MT |Fn] = MT∧n =. This condition clearly does not always hold. For example, if we consider the
simple symmetric random walk of Example 5.2.3, starting from x = 1, then P (T1 < ∞) ≥ P (T0 <
TN ) = N−1

N → 1. And so T0 < ∞ a.s. As a result, ST0
= 0, and E[ST0

|Fn] = 0 for all n. But ST0∧n

is a non-degenerate RV for all n. Specifically for n = 1 we have ST0∧n = S1 which is equal to 0 and
2 with probability 1

2 each. In fact, the fact that ST0 is a martingale implies E[ST0∧n] = E[S0] = 1.
Bottom line, we need some additional conditions...

Let T be a stopping time. What are the events we can determine whether occurred or not by
only observing the process up to time T? Mathematically, any event A with the the property that
A ∩ {T = n} ∈ Fn for all n. That is, if T = n, then our information up to that time, namely Fn, is
sufficient to determine whether A occurred or not. This leads to a definition.

Definition 5.4.1. Let T be a stopping time with respect to the filtration mathfrakF . The sigma-
algebra of events determined by time T , FT , is defined as

FT := {A ∈ F : A ∩ {T = n} ∈ Fn, for all n ∈ N}.

Exercise 5.4.1. Show that FT defined above is a sigma-algebra.

Note that when T is deterministic, that is for some n ∈ Z+, T = n a.s., FT = Fn (as mentioned
a long time ago, all of our sigma-algebras are complete with respect to the underlying probability
measure), so this notion really extends the filtration to indexing by stopping times. To state the
optional stopping theorem, we need an additional assumption. Recall the definition of a uniformly
integrable sequence of RVs, Definition 3.3.1. Though there we indexed the RVs by N, the definition
naturally extends to the index set Z+, which is the one we use here. A sub-martingale M which is also
uniformly integrable automatically satisfies the conditions of the sub-martingale convergence theorem,
Theorem 5.3.2 and thereforeM∞ := limn→∞ Mn exists a.s. andM∞ is integrable. By Vitali’s theorem,
Theorem 3.3.1, the limit also holds in L1, that is limn→∞ E[|Mn −M∞|] = 0. With this, we are ready
to state the optional stopping theorem.

Theorem 5.4.1. Let M be a uniformly integrable sub-martingale and let S < ∞ a.s. be a stopping
time. Then MS is integrable and E[M∞|FS ] ≥ MS a.s.

Corollary 5.4.1. Suppose that M′ is a sub-martingale and that S ≤ T < ∞ a.s. are stopping times
and M ′T is uniformly integrable. Then M ′

S is integrable and E[M ′
T |FS ] ≥ M ′

S a.s.

Note that if M is a martingale, then it is a sub-martingale and −M is also a sub-martingale, and
therefore, if we assume in Theorem 5.4.1 or Corollary 5.4.1 thatM is a martingale, then the inequalities
become equalities.

Word of warning: as we saw in the example opening this section, integrability of MT does not
imply that MT is uniformly integrable.

Proof of Corollary 5.4.1. Let M := M′T . Then by assumption M′T is UI and M ′
T = limn→∞ Mn.

Thus, the theorem gives E[M∞|FS ] ≥ MS . The lefthand side is E[M ′
T |FS ] and the righthand side is

M ′
S .

Proof of Theorem 5.4.1. Let A ∈ FS and let n ∈ Z+

E[Mn, A] =

n∑
k=0

E[Mn, A ∩ {S = k}] + E[Mn, A ∩ {S > n}].

For k ≤ n,
E[Mn, A ∩ {S = k}] ≥ E[Mk, A ∩ {S = k}] = E[MS , A ∩ {S = k}].

Therefore,
n∑

k=0

E[Mn, A ∩ {S = k}] = E[MS , A ∩ {S ≤ n}].

Thus,
E[Mn, A] ≥ E[MS , A ∩ {S ≤ n}] + E[Mn, A ∩ {S > n}]. (5.4.1)

We will now squeeze (5.4.1) to obtain what we need to complete the proof.
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1. Let A := {MS > 0}, and then let n → ∞ in (5.4.1). Then the uniform integrability (on lefthand
side and second summand on the righthand side) and choice of A, and monotone convergence
(right summand on righthand side) to conclude:

E[M∞, A] ≥ E[(MS)+]

. Therefore E[(MS)+] < ∞.

2. Apply (5.4.1) to the sub-martingale M′ := ((Mn)+ : n ∈ Z+) and the stopping time S′ := S ∧N
for some N ∈ Z+. Thus, for A ∈ FS′ and n = N , (5.4.1) reads

E[(MN )+, A] ≥ E[(MS′)+, A].

In particular, letting A := Ω, we have

E[(MN )+] ≥ E[(MS∧N )+].

We use these two facts to prove that MS is integrable. As the first gives E[(MS)+] < ∞, it remains to
prove E[(MS)−] < ∞. Use the sub-martingale property of the stopped martingale MS∧N to conclude
obtain E[M0] ≤ E[MS∧N ] = E[(MS∧N )+]− E[(MS∧N )−], and so

E[(MS∧N )−] ≤ E[(MS∧N )+]− E[M0] ≤ E[(MN )+]− E[M0],

where we have used the second fact to obtain the second inequality. Therefore, by Fatou,

E[(MS)−] ≤ sup
N

E[(MN )+]− E[M0] < ∞.

Thus MS is integrable. Now return to (5.4.1) for the third time, and take the limit as n → ∞. Vitali’s
convergence theorem, Theorem 3.3.1 gives that the lefthand side tends to E[M∞, A]. Also, UI and
Proposition 3.3.3 gives that the second summand on the righthand side tends to zero. Finally, the
integrability of MS and the dominated convergence theorem give that first summand on the righthand
side tends to E[MS , A], completing the proof.

We need some sufficient conditions for uniform integrability. Here is one result in this direction.

Proposition 5.4.1. Let M be a sub-martingale and T < ∞ a.s. a stopping time. Let K > 0. Then
each of the following implies that MT is uniformly integrable.

1. T ≤ K.

2. E[T ] < ∞ and |Mn+1 −Mn| ≤ K.

Proof. In the first case we have that MT = (M0,MT∧1, . . . ,MK ,MK , . . . ). That is, MT has at most
K + 1 distinct elements. Any finite collection of integrable RVs is uniformly integrable. In the second
case, |MT∧n| ≤ TK, an integrable RV and therefore MT is uniformly integrable.

It is worth also noting the following.

Proposition 5.4.2. Let M be a UI sub-martingale and let T < ∞ a.s. be a stopping time. Then MT

is UI.

Proof.

E[|MT∧n|, |MT∧n| > M ] ≤ E[|MT∧n||{T ≤ N} ∩ {|MT∧n| > M}] + E[|Mn|, T > N ].

Let ϵ > 0. By Proposition 3.3.3, there exists N ′ = N ′(ϵ) such that supn E[|Mn|, T > N ] ≤ ϵ/2
provided N > N ′(ϵ). As for the first term on the righthand side, it is bounded above by

N∑
k=0

E[|Mk∧n|, |Mk∧n| > M ].
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As each of the RVs Mk∧n is integrable, there exists some M ′ = M ′(N, ϵ) such that this sum is bounded
above by ϵ/2, provided M > M ′. Therefore, freezing N > N ′, and M > M ′ we have

sup
n

E[|MT∧n|, ||MT∧n| > M ] ≤ ϵ/2 + ϵ/2.

In particular,

lim
M→∞

sup
n

E[|MT∧n|, ||MT∧n| > M ] ≤ ϵ.

As ϵ is arbitrary, our work here is done.

Example 5.4.1. Suppose that M is a martingale, representing the net gain in some (fair) game of
chance indexed by the number of rounds, so M0 = 0. Let’s also assume that the number of rounds
cannot exceed some deterministic number K. The player is allowed to pick any exit strategy, that is,
will quit the game at some stopping time S ≤ N . The optional stopping theorem then asserts that
E[MK |FS ] = MS. Therefore, E[MS ] = E[MK ] = E[M0] = 0. In other words, no strategy can improve
the expected net gain. In other words, under this condition on the number of rounds (one can place
more elaborate conditions, depending on the martingale), the game remains fair. One example where
the uniform integrability is violated is of the ”Martingale” of Section 5.2.1, where we found a strategy,
namely a stopping time, which guarantees a win, despite the process being a martingale.

5.5 Doob’s Maximal Inequalities

The last section showed us that sub-martingales can be stopped. But here we say, not yet! They
also exhibit some very powerful and useful maximal inequalities, inequalities which allow to control
the running maxima of the process. We will present two types of maximal inequalities, one Doob’s
maximal inequality, is a Markov-type inequality, and the second, Doob’s Lp maximal inequality gives
bounds on moments.

Theorem 5.5.1. Let M be a submartingale and let λ > 0. Then for every n ∈ Z+.

λP ( max
0≤k≤n

Mk ≥ λ) ≤ E[(Mn)+, max
0≤k≤n

Mk ≥ λ].

Proof. Let A be the event in question, and let S = inf{k ∈ N : Mk ≥ λ}. Then A = {S ≤ n}. First,
E[(MS)+, S ≤ n] ≥ E[MS , S ≤ n] ≥ λP (S ≤ n) = λP (A). We now obtain an upper bound on the
expression on the left. Use the sub-martingale property to obtain

E[(MS)+, S ≤ n] =

n∑
k=0

E[(Mk)+, S = k] ≤
n∑

k=0

E[(MN )+, S = k] = E[(MN )+, S ≤ n].

Putting it all together, we have λP (A) ≤ E[(Mn)+, A], as desired.

An easy corollary is Kolmogorov’s Maximal inequality 3.5.1.

Example 5.5.1. Set S0 := 0 and let S1, S2, . . . be as in Theorem 3.5.1. Then the process S is a square
integrable martingale, and therefore S2 := (S2

n : n ∈ Z+) is a nonnegative sub-martingale. Let x > 0.
Then Doob’s maximal inequality with M := S2 and λ := x2 gives

x2P ( max
0≤k≤n

S2
k ≥ x2) ≤ E[S2

n].

But the event on the lefthand side is {maxk=0...,n |Sk| ≥ x}, and the result follows.

We now turn to Doob’s maximal Lp inequality. Here is the statment

Theorem 5.5.2. Let M be a submartingale and p > 1 satisfying E[(Mn)
p
+] < ∞. Let M∗

n :=
max0≤k≤n(Mk)+. Then

E[(M∗
n)

p] ≤ (
p

p− 1
)pE[(Mn)

p
+].



Example 5.5.2. Let S be as in Example 5.5.1. Then

E[ max
0≤k≤n

|Sk|2] ≤ 4E[S2
n].

Proof. The proof is an application of Doob’s maximal inequality. We need take every bit of information
from the righthand side in the inequality, in particular, the integrability of (Mn)

p
+. To simplify matters

we observe that if we all Doob’s inequality t the sub-martingale M+, it reads

P (M∗
n ≥ λ) ≤ λ−1E[(Mn)+,M

∗
n ≥ λ]. (5.5.1)

Next, we recall that for a nonnegative RV, Z, we have

E[Zp] =

∫ ∞

0

P (Zp ≥ z)dz
λ=z1/p

=

∫ ∞

0

P (Z ≥ λ)pλp−1dt.

Fix some K > 0. Then taking Z := M∗
n ∧K and observeing that P (Z > K) = 0, we have

E[(M∗
n ∧K)p] ≤

∫ K

0

P (M∗
n ≥ λ)dλ,

as for λ ≤ K, M∗
n ∧K ≥ λ if and only if M∗

n ≥ λ. We inserted K because we do not know that (M∗
n)

p

is integrable, yet. Next, we plug (5.5.1) into this, and the rest is a general argument that has nothing
to do with martingales, just convexity. Let’s go.

E[(M∗
n ∧K)p] ≤ p

∫ K

0

λp−2E[(Mn)+,M
∗
n ≥ λ]dλ.

Using Riemann sums, we can exchange the integral and expectation to rewrite the righthand side as

pE[(Mn)+

∫ K

0

1[λ,∞)(M
∗
n)λ

p−2dλ] = pE[(Mn)+

∫ M∗
n∧K

0

λp−2dλ]

=
p

p− 1
E[(Mn)+(M

∗
n ∧K)].

Therefore,

E[(M∗
n ∧K)p] ≤ p

p− 1
E[(Mn)+(M

∗
n ∧K)p−1].

To finish, we first apply the Holder inequality (Assignment #2, Problem 7, with X := (Mn)+, Y =
(M∗

n ∧K) and µ := P ) to obtain

E[(Mn)+(M
∗
n ∧K)] ≤ E[(Mn)

p
+]

1/pE[(M∗
n ∧K)(p−1)q]

1
q ,

where 1
q = 1− 1

p = p−1
p . In particular, q(p− 1) = p, and so

E[(M∗
n ∧K)p] ≤ p

p− 1
E[(Mn)

p
+]

1
pE[(M∗

n ∧K)p]1−
1
p .

If the lefthand side is zero for all K there is really nothing left to prove, otherwise, pick K large so
that the lefthand side is strictly positive, to then obtain

E[(M∗
n ∧K)p]

1
p ≤ p

1− p
E[(Mn)

p
+]

1
p .

Now raise both sides to the power p and take K → ∞ and monotone convergence to complete the
proof.
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Assignment 1

1. Show that the Borel σ-algebra on R2, B(R2), is the product σ-algebra B(R)× B(R).

2. Complete the details in the discussion below Proposition 1.2.5 showing that the product σ-algebra
on {0, 1}Z is not the power set.

3. Let (µn : n ∈ N) be measures on a σ-algebra F . Show that
∑∞

n=1 µn is a measure. We’ll return
to this later. You’ll appreciate the monotone convergence theorem...

4. Let µ be a Borel measure on R. The support of µ, Supp(µ), is the set {x ∈ R : µ((x− ϵ, x+ ϵ)) >
0 for all ϵ > 0}.

(a) Show that Supp(µ) is closed and that its complement is {x ∈ R : µ((x − ϵ, x + ϵ)) =
0 for some ϵ > 0}.

(b) Find probability measures with the following supports: {0}, Z and {0} ∪ [1, 2]. All must be
expressed in terms of objects we discussed in class or in this assignment.

5. Let x ∈ R. Define δx : B(R) → {0, 1} by letting

δx(A) :=

{
1 x ∈ A

0 x ̸∈ A

(a) Show that δx is a probability measure. This measure is known as the Dirac delta measure.

(b) Show that any Borel probability measure P on R with finite support is a convex combination
of delta measures. That is, there exist n ∈ N, c1, . . . , cn ≥ 0 with

∑n
j=1 cj = 1 and

x1, . . . , xn ∈ R so that P =
∑n

j=1 cjδxj .

6. Recall that the completion of a measure space (Ω,F , µ) is a measure space (Ω, F̄ , µ̄), where
F̄ := {A ∪ N ′ : A,N ∈ F , µ(N) = 0 and N ′ ⊆ N} and µ̄(A ∪ N) := µ(A). Prove that F̄ is a
σ-algebra and that µ̄ is well-defined and a measure on F̄ .

7. Let A be an algebra and let P be a probability measure on σ(A). Prove the following “approxi-
mation” result: for every B ∈ σ(A) and every ϵ > 0 there exists A ∈ A such that P (A△B) < ϵ
(recall that A△B := (A−B) ∪ (B −A)).

8. Let P be Borel probability measure on R. Recall that the distribution function of P is the
function F (x) = P ((−∞, x]). Prove that the distribution function uniquely determines P (that
is, if Q is a probability measure with distribution function F , then Q = P ).

9. Let P be a Borel probability measure on R and let F be its distribution function.

(a) Prove that

i. F is non-decreasing, right continuous and has left limits.

ii. limx→∞ F (x) = 1 and limx→−∞ F (x) = 0.

(b) For < −∞ < a < b < ∞, express the probability of each of the following intervals in terms
of the distribution function: {a}, (a, b], (a, b), [a, b), [a, b].

10. Suppose that F : R → [0, 1] is a function satisfying the conditions listed in the previous question.
For y ∈ (0, 1), let G(y) = sup{x : F (x) < y}. Show that the pushforward measure mG is a Borel
probability measure on R with distribution function F . To do that, examine the intervals of the
form {y : G(y) ≤ x}.

1



Assignment 2

1. (a) Let (an,m : n,m ∈ N) be an infinite array of nonnegative numbers. Use the MCT to prove

∞∑
n=1

∞∑
m=1

an,m =

∞∑
m=1

∞∑
n=1

an,m.

Hint. Let µ be the counting measure on N. For n ∈ N, define the RV fN (m) =
∑N

n=1 an,m.
What is

∫
fN (m)dµ? What is limN→∞

∫
fN (m)dµ? What is

∫
limN→∞ fN (m)dµ?

(b) Use the result from the first part to redo Problem 3 from Assignment #1.

2. Prove Theorem 2.5.2.

3. Let f(x) =
∑∞

n=0 anx
n be a power series. Assume that the coefficients (an : n ∈ N) are

nonnegative and decreasing to 0 and that the radius of convergence of the power series is 1. Use
the MCT to show that

lim
x↓−1

f(x) =

∞∑
n=0

(−1)nan.

4. Let f : [0,∞) → [0,∞) be Riemann integrable, satisfying
∫∞
0

f(t)dt = 1, and suppose further

that
∫∞
0

xf(x)dx < ∞. For t ≥ 0, define

ϕ(t) :=

∫ ∞

0

e−txf(x)dx.

Prove, using the DCT, that ϕ′(0+) exists and is equal to −
∫
xf(x)dx. both terms on the

righthand side are finite.

5. Jensen’s Inequality. Let U be an open interval in R. Recall that a function φ : U → R is
called convex if for any x, y ∈ U and λ ∈ (0, 1), ϕ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y). Among
other properties, convex functions are continuous, and therefore Borel measurable.

Let (Ω,F , P ) be a probability space.

Jensen’s inequality states the following. Let φ be a convex function and let X be an integrable
RV. Then the expectation of φ(X) is defined and satisfies

E[φ(X)] ≥ φ(E[X]).

Prove this inequality and find necessary and sufficient conditions for an equality. Follow these
steps.

(a) Use the definition of convexity to show that for each b, a ∈ R, φ(b) ≥ φ(a) + (b− a)φ′(a+),

where φ′(a+) := limc↓a
φ(c)−φ(a)

c−a ∈ R.
(b) Use the above inequality with b = X and a = E[X] to conclude that E[φ(X)] is well defined

and that the inequality holds.

6. Applications of Jensen’s ineqaulity. You’re expected to be familiar with characterization of
convex functions. If you need help, let me know.

In all problems below use Jensen’s inequality in an appropriate setting to prove the claim.

(a) Arithmetic Geometric Means Inequality (AGM). Let n ∈ N, c1, . . . , cn > 0 and let
λ1, . . . , λn ∈ [0, 1] with

∑n
j=1 λj = 1. Then

n∏
j=1

c
λj

j ≤
n∑

j=1

λjcj .

(This can be done directly from the definition - but also describe the relevant probability
space).
In the next parts we assume that (Ω,F , P ) is a probability space and X is a RV.

1



(b) If P (X = 0) < 1, E[|X|]E[ 1
|X| ] ≥ 1.

(c) For p ∈ [1,∞) define ∥X∥p := (E[|X|p])1/p. Show that p → ∥X∥p is nondecreasing.

7. Holder’s Inequality. Let (Ω,F , µ) be a measure space. Let p, q ∈ (1,∞) satisfy 1
p + 1

q = 1.
Holder’s inequality states that for RVs X and Y :

|
∫

XY dµ| ≤ (

∫
|X|pdµ)

1
p (

∫
|Y |qdµ)

1
q .

whenever both terms on the righthand side are finite (this is not necessary, but we want to avoid
0 ∗ ∞ on the righthand side, which is not really an issue because on this case the lefthand side
is necessarily zero). Prove the inequality by following these steps.

(a) If one of the terms on the righthand side is zero, then the lefthand side is zero.

(b) Suppose both terms on the righthand side are finite and nonzero. LetX ′ = X/(
∫
|X|pdµ)1/p

and Y ′ = Y/(
∫
|Y |qdµ)1/q. Then the inequality is equivalent to |

∫
X ′Y ′dµ| ≤ 1. Now use

the AGM to show that for a, b ≥ 0, ab ≤ 1
pa

p + 1
q b

q to finish.

(c) State and prove a necessary and sufficient condition for an equality. It’s hidden in your
proof of the previous item.

The case p = q = 2 is called the Cauchy-Schwarz inequality.

8. Consider the infinite product measure with p = 1
2 and the coordinate mappings (Xn : n ∈ N).

(a) Show that the RV Y :=
∑∞

n=1 2
−nXn has U[0, 1] distribution by identifying its distribution

function.

Hint. Given n ∈ N and xj ∈ {0, 1}, j = 1, . . . , n then there exists some y ∈ [0, 1] so that
the event ∩n

j=1{Xj = xj} is equal to the event {y ≤ Y ≤ y + 2−n} almost surely. Use this
to identify the CDF of Y .

(b) Show that you can modify the construction of Y in part a) to obtain an infinite IID U[0, 1]-
distributed sequence (from the same sequence of coordinate mappings).

2



Assignment 3

1. Let (Xn : n ∈ N) be independent satisfying P (Xn = n) = P (Xn = −n) = 1
2n ln(4n) , P (Xn =

0) = 1− 1
n ln(4n) . Show that X̄n → 0 in probability but not a.s.

2. Let (An : n ∈ N) be a sequence of events satisfying P (Ak ∩ Ak′) = P (Ak)P (Ak′) for k < k′

(AKA pairwise independent). Suppose that
∑∞

k=1 P (Ak) = ∞.

(a) Prove limn→∞

∑n
k=1 1Ak∑n

k=1 P (Ak)
= 1 a.s.

Hint: denote the numerator by Sn. Let nk be the smallest index satisfying E[Snk
] ≥ k2.

Apply Chebychev and Borel-Cantelli along this sequence, and then complete for the full
sequence.

(b) Let (Xn : n ∈ N) be IID continuous RVs (the CDF is continuous) and let An := {Xn =
max(X1, . . . , Xn)}. That is, Xn is a “record” value, or: a record is observed at time n.
Prove that P (An) =

1
n and that (An : n ∈ N) are pairwise independent. Let Rn denote the

time of the n-th record. Show that lnRn

n → 1 a.s.

Hint: If X is a continuous RV and Y is an independent RV then P (X = Y ) = 0. You
can use this without proof. This reduces all probability calculations into combinatorial
calculations.

3. Complete the second part in the proof of the Strong Law of Large Numbers.

4. At time 0 your initial capital X0 is 1. At time n + 1, your capital is Xn+1 := Rn+1Xn, where
(Rn : n ∈ N) are IID nonnegative RVs with finite expectation.

(a) Show that lnXn

n converges a.s. to some constant. Express it as an expectation of a function
of R1.

(b) Give an example with E[R1] > 1, yet Xn → 0 a.s. When investing, average interest rate is
not a correct measurement.

5. Let (Xn : n ∈ N) be IID with zero expectation. Let Sn :=
∑n

k=1 Xk and letMn := maxk=1,...,n |Sk|
Prove limn→∞

Mn

n = 0 a.s. and limn→∞ E[Mn

n ] = 0.

Hint: Use the Strong Law of Large Numbers and Fatou’s Lemma.

6. Complete the proof of the Glivenko-Cantelli Theorem by following these steps.

(a) Let F be any distribution function. Let (Un : n ∈ N) be IID U [0, 1]. Let G be the function
from Assignment #2 Problem 10. Then the sequence (Xn : n ∈ N) defined as Xn := G(Xn)
is an IID sequence with CDF F .

(b) Let FU be the CDF of the uniform distribution on [0, 1], F̄U,n the empirical distribution
function for U1, . . . , Un, and F̄n be the empirical distribution function for X1, . . . , Xn. To
conclude, express F̄n − F in terms of F̄U,n − FU .

7. The Strong Law of Large Numbers states that for an IID sequence (Xn : n ∈ N), the integra-
bility of X1 (X1 has finite expectation or, equivalently, E[|X1|] < ∞) is sufficient for the a.s.
convergence of the empirical means. We will now show that it is also necessary. Namely: if
E[|X1|] = ∞ then P (limn→∞ X̄n exists and is in R) = 0.

To prove assume then that E[|X1|] = ∞. Now follow these steps:

(a) Show that P (|Xn| ≥ n i.o.) = 1.

(b) Show that |X̄n+1 − X̄n| ≥ |Xn+1|
n+1 − |X̄n|

n+1 ,

(c) Now argue by contradiction assuming limn→∞ X̄n exists and is in R on some event with
positive probability, and use the two steps above to arrive to a contradiction.

1



8. Some Information Theory. Let (Xn : n ∈ N) be IID with finite support S. You should
think of the sequence of the RVs as data transmitted by some source over time (e.g. a rover
on Mars transmitting status signals to earth, S representing all possible signals: error codes,
battery power levels, etc.). For a sequence (s1, . . . , sn) of elements in S, define p(s1, . . . , sn)
as the probability of observing this particular sequence in the first n units of time. That is
p(s1, . . . , sn) = P (X1 = s1, . . . , Xn = sn). In particular, the random variable p(X1, . . . , Xn)
gives the probability of the observed sequence.

(a) Use the law of large numbers to show that

− 1

n
ln p(X1, . . . , Xn)

converges as n → ∞ almost surely to a constant we denote by H, known as the entropy or
information content of the distribution of X1. Express the entropy H as the expectation of
some explicit function of X1. In words, you showed that for n large, with the exception of
a set of “unlikely” sequences, the probability of a sequence of length n is e−n(H+o(1)). This
property is called the equipartition property.

(b) Use Jensen’s inequality to show that H ∈ [0, ln |S|], and determine necessary and sufficient
conditions for equality to 0 and to |S|.

(c) For ρ ∈ (0, 1] we say that the information content of (Xn : n ∈ N) can be compressed
at a ratio ρ if for every ϵ > 0 there exists N = N(ϵ, ρ) such that for each n ≥ N , there
exists a function fn : Sn → S⌈ρn⌉ and an event An with P (An) > 1 − ϵ such that on An,
(X1, . . . , Xn) → fn(X1, . . . , Xn) is one-to-one. In other words, the bulk of the transmitted
data can be expressed by using sequences which are shorter without loss of information.

Use the equipartition property to prove Shannon’s compression theorem: The infor-
mation content of (Xn : n ∈ N) can be compressed at any ratio larger than H/ ln |S| and
cannot be compressed at any ratio smaller than H/ ln |S|.
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Assignment 4

Note: You must justify your all your steps in all problems below using techniques introduced in this
course.

1. Assume Yn ⇒ Y and Xn → c in probability, where c is some constant. Show that XnYn ⇒ cX.

2. Gumbel Distribution. Let (Xn : n ∈ N) be IID Exp(λ). Define Mn := max(X1, . . . , Xn).
Show that that (Mn− (lnn)/λ : n ∈ N) converges weakly. Identify the limit distribution through
its CDF.

3. Let Xn ∼ N(0, σ2
n), with σ2

n > 0 for all n ∈ N. Show that Xn converges weakly if and only if
limn→∞ σ2

n exists and is a nonnegative real number. Identify the distribution of the limit RV.

4. Let U ∼ U [− 1
2 ,

1
2 ], that is U is uniform on [− 1

2 ,
1
2 ].

(a) Calculate the characteristic function of U .

(b) Use your calculus skills to prove sin t
t =

∏∞
n=1 cos(t/2

n).

(c) Identify the righthand side in (b) as the characteristic function of a series of independent
RVs.

(d) Give an alternative proof to Assignment #2 Problem 8.

5. Let X be a random variable satisfying P (X = 1) = P (X = −1) = 1
2 . Show that X is not a sum

of two independent and identically distributed RVs. Conclude that the function

ϕ(t) :=

{√
cos t if cos t ≥ 0

i
√
| cos t| otherwise

is not a characteristic function, yet satisfies all the conditions 4.5.1-(1),(2).

Hint: Argue by contradiction, assuming X has the same distribution as Y1+Y2 where Y1 and Y2

are independent and are identically distributed. Use this to conclude that E[sin(πY1)]
2 = 1, so

the support of Y1 is contained in 1
2 + Z. Show that P (Y = 1

2 + k) > 0 if and only if k ∈ {0, 1}.
Then show that this implies P (Y1 + Y2 = 0) > 0, contradicting the assumption.

6. More on inversion: Point mass. Let X be a random variable with characteristic function φ.

(a) Use the identity limT→∞
1
2T

∫ T

−T
eitxdt = 1{0}(x) to conclude that for all a ∈ R

P (X = a) = lim
T→∞

1

2T

∫ T

−T

e−itaφ(t)dt.

(b) Let Y be independent of X and identically distributed. Use part (a) to conclude that

P (X = Y ) = limT→∞
1
2T

∫ T

−T
|φ(t)|2dt.

(c) Conclude that ∑
x∈R,P (X=x)>0

(P (X = x))2 = lim
T→∞

1

2T

∫ T

−T

|φ(t)|2dt.

(d) Calculate both sides of the equality above for some discrete random variable which is not a
constant a.s.

(e) Show that if X is a random variable satisfying limt→∞ |φ(t)| = 0, then X is a continuous
RV (P (X = x) = 0 for all x).

7. Even more on inversion: Integrability and densities. Let φ be the characteristic function
of some RV X and suppose that

∫∞
−∞ |φ(t)|dt < ∞. Show that X has a continuous and bounded

density f with respect to the Lebesgue measure given by

f(x) =
1

2π

∫ ∞

−∞
e−itxφ(t)dt

by following these steps:

1



(a) Show that the function R ∋ z → 1
2π

∫∞
−∞ e−itzφ(t)dt is well-defined, continuous and bounded.

(b) Apply the inversion formula to obtain that for x ≥ 0

P (X ∈ (0, x)) + P (X ∈ {0, x}) =
∫ x

0

1

2π

∫ ∞

−∞
e−itzφ(t)dtdz.

State the corresponding statement for negative x.

(c) Conclude that X has density f .

(d) Give an example of a random variable with bounded density other than normal, and whose
characteristic function satisfies the conditions.

(e) Give an example of a random variable with bounded density and characteristic function not
satisfying the condition.

8. Behavior near zero and moments. Suppose that X is a random variable with characteristic
function φ satisfying

lim
t→0

1− φ(t)

t2/2
= σ2 ≥ 0.

(a) Show that E[X2] = σ2 and E[X] = 0.

Hint: First show that X is integrable. Lemma 4.5.2 would be useful. Next show that in this
case 1 − φ(t) = E[1 − cos(tX)] + iE[tX − sin(tX)]. Note that the expectation of the real
part of the righthand side is of a nonnegative RV. Use the assumption and Fatou’s lemma
to conclude that E[X2] < ∞.

(b) Show that if σ2 = 0, then necessarily φ ≡ 1.

(c) Use the part (b) to give an example of a function satisfying 4.5.1-(1),(2) but which is not a
characteristic function.

9. One more characterization of weak convergence. Let (Xn : n ∈ N) and X be random
variables. Show that one can define RVs (Zn : n ∈ N) and Z all of which are deterministic
functions of a single U [0, 1] RV, with the following properties.

(a) For each n, the distribution of Zn is the same as the distribution of Xn, and the same holds
for Z and X.

(b) Zn → Z a.s. if and only if Xn ⇒ X.

Hint. Assignment #1 Problem 10.

(c) Fatou’s Lemma. Let Xn ⇒ X. Show that for any nonnegative continuous g we have
lim inf E[g(Xn)] ≥ E[g(X)].
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Topics for Essay 1

All references below are from the book: Probability: Theory and Examples, Version 5, 2019-01-11.
You can freely use this book, but you must include at least one other reference. The first topic focuses
on the foundations we covered in the beginning of the course, the second is closely related to laws of
large numbers and the Poisson convergence, and the third is on weak convergence.

Hewitt-Savage Zero-One Law, Sec. 2.5

Define and explain the notion of the exchangeable σ-algebra associated with an sequence of identically
distributed RVs. Discuss its connection with the Tail σ-algebra, and give concrete examples of invariant
events which are not tail events, at least one not in the book. State and Prove Hewitt-Savage Zero-One
Law, Theorem 2.5.4, with concrete applications, at least one not in the book and which cannot be
done with Kolmogorov’s Zero-One Law.

Occupation Problem, Sec. 2.2.2

Expand Example 2.2.10 to the following:

1. Weak limit for the the number of balls in each box.

2. Strong law of large numbers for the proportion of boxes with k balls for any k ∈ Z+.

The Method of Moments, Sec. 3.3.5

Describe the method of moments for weak convergence, including statement and proof of Theorem
3.3.26, at least one application not in the book, and an example showing two distinct distribution with
identical moments and a discussion on why the conditions in the theorem do not hold.

1
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Topics for Essay 2

As with the first essay, all references below are from the book: Probability: Theory and Examples,
Version 5, 2019-01-11. You can freely use this book, but you must include at least two other references.
I’ll be happy to help with references and the work itself.

Large Deviations, Sec. 2.7

State and prove Cramer’s Theorem, Th. 2.7.7. Provide an example for a calculation of the rate
function and give at least one application not in the book.

De-Finetti’s Theorem, Sec. 4.7

Define what an exchangeable sequence of random variables is. Provide some non trivial, not IID
examples (e.g. Polya’s Urn). State and prove De-Finetti’s Theorem, Th. 4.7.9 and Th. 4.7.10. Show
that the conclusion of the latter fails to hold for finite sequences. Find at least one application not in
the book.

Blackwell’s Renewal Theorem, Sec. 2.6

State and prove Th. 2.6.4 and give at least one application not in the book.

Berry Esseen Theorem, Sec. 3.4.4

Warning: A pretty technical project. State and Prove Th. 3.4.17. Present at least one application.

Local Limit Theorems, Sec. 3.5

State and prove Th. 3.5.2, and either Th. 3.5.3 or 3.5.4. Provide at least one application.

Stable Laws (Distributions), Sec. 3.8

State and prove Th. 3.8.2 and Th. 3.8.8, and give at least one example from the book.
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Assignment 5

Note: You must justify your all your steps in all problems below using techniques introduced in this
course.

1. Let X := (Xn : n ∈ Z+) be a stochastic process. Suppose that (Ak : k ∈ N) are Borel sets of R.
Define T1 := inf{n ∈ Z+ : Xn ∈ A1}. Continue inductively, letting Tk+1 := inf{n > Tk : Xn ∈
Ak+1}. Show that (Tk : k ∈ N) are all stopping times.

2. Martingales with Bounded Increments

(a) Suppose that M is a martingale with the property that for some C > 0, supn |Mn+1−Mn| ≤
C a.s. Prove that that event {limn→∞ Mn exists in R}∪{lim infn→∞ Mn = −∞, lim supn→∞ Mn =
∞} holds a.s.

Hint: For K ∈ N, let τ−K = inf{n ∈ Z+ : Mn ≤ −K}. The martingale (Mτ−K∧n : n ∈ Z+)
is bounded below. Apply the convergence theorem to conclude that it converges a.s. Thus
on {lim infMn > −∞}, limn→∞ Mn exists a.s. Prove an analogous statement regarding
{lim infMn < ∞}. What is the complement of the union of these two events?

Applications

(b) Use the results above to prove that the simple symmetric random walk satisfies lim infn→∞ Sn =
−∞ and lim supn→∞ Sn = ∞, a.s.

(c) Let (An : n ∈ N) be a sequence of events. Let F0 := {∅,Ω} and for n ∈ N define Fn :=
σ(A1, . . . , An). Let D := {

∑∞
n=1 E[1An |Fn−1] = ∞}. Show that the following holds a.s. :

on D, {An i.o.} and on Dc, {An f.o.}. What two results we have extensively used in the
past this extends?

3. Biased Simple Random Walk
Let x ∈ Z, p ∈ (0, 1

2 ) and (Xn : n ∈ N) IID with P (Xn = 1) = p = 1−P (Xn = −1). Let S0 := x
and continue inductively, letting Sn+1 := Sn +Xn+1. For any y ∈ Z, let Ty = inf{n ∈ Z+ : Sn =
y}. Let a, b ∈ Z with a < x < b.

(a) Find ρ > 0 such that (ρSn : n ∈ Z+) is a martingale.

(b) Find P (Ta < Tb).

(c) Calculate E[Ta ∧ Tb].

4. Backward Martingale and LLN
Let (Xn : n ∈ N) be IID with expectation µ. Let S := (Sn : n ∈ N) be the sequence of partial
sums Sn :=

∑n
k=1 Xk. For k ∈ N, define G−k := σ(Sk, Sk+1, . . . ). Thus G−k ⊆ G−k+1 ⊆ · · · ⊆

G−1 = σ(S1, S2, . . . ), and let M−k := E[X1|G−k].

(a) Show that M−k = Sk/k.

(b) Show that for each N ∈ N, the process (M−N ,M−N+1, . . . ,M−1) is a martingale with
respect to the filtration (G−N ,G−N+1, . . . ,G−1).

(c) Apply Doob’s upcrossing inequality to show that for any a < b, the expected number of
upcrossings of [a, b] by the process above is bounded by some constant independent of N .

(d) Conclude that limk→∞ M−k converges a.s. and that the limit is constant (a zero-one law).

(e) Show that the constant of the last part is E[X1].

Hint: show that you can assume without loss of generality that X1 ≥ 0 and under this
assumption, limM→∞ supk E[(Sk/k), Sk/k > M ] = 0. Show how this leads to the desired
conclusion.

We’ve got ourselves another proof of the law of large numbers.

5. Levy’s Zero-One Law
Recall that a sequence of RVs (Xn : n ∈ N) converges to an integrable RV X∞ in L1 if
limn→∞ E[|Xn −X∞|] = 0.

Let F = (Fn : n ∈ Z+) be a filtration, and let F∞ be the sigma-algebra generated by ∪n∈NFn.
Suppose that X is an integrable random variable measurable with respect to F∞.

1



(a) Prove that limn→∞ E[X|Fn] = X a.s. and also in L1.

Applications

(b) Suppose that (Xn : n ∈ N) are RVs such that limn→∞ Xn = X∞ in L1. Prove that
limn→∞ E[Xn|Fn] = X in L1.

(c) (Levy’s Zero-One law) Conclude from (a) that for any event A ∈ F∞, E[1A|Fn] → 1A a.s.
and in L1.

(d) Apply the last result to prove Kolmogorov’s Zero-One law.
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Assignment 6

The following refer to a single chapter from our lecture notes of your choice. Please fully cite all sources
you have used.

1. Find at least 5 corrections or improvements to the presentation. Examples include: typos and
other errors, missing or incorrect references, missing, incorrect, inconsistent notation.

2. Propose an additional result related to the chapter chosen and which has not been discussed or
presented in the notes.

3. Propose two homework problems which have not appeared in our course and write their solution.
The problems must be directly related to our course and the topic we covered, and should be
above the level of a direct application of an existing result, generally the level of our homework
problems. Math Stack Exchange is a great source of problems.

1
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