A survey of fitness-based models for biological evolution

Iddo Ben-Ari, University of Connecticut

U of Rochester, February 2018

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Toy models for time evolution of a system consisting of a population of "species".

Common features

- \blacktriangleright Population is asymptotically large.
- \blacktriangleright Fitness-based models:
	-

KORK STRAIN A BAR SHOP

What is the asymptotic fitness distribution ?

- Bak-Sneppen model ('93)
- \triangleright A model presented by Guiol Machado and Schinazi ('11)
- \triangleright Variations of the above

Toy models for time evolution of a system consisting of a population of "species".

Common features

- \blacktriangleright Population is asymptotically large.
- \blacktriangleright Fitness-based models:
	-

KORK STRAIN A BAR SHOP

What is the asymptotic fitness distribution ?

- Bak-Sneppen model ('93)
- \triangleright A model presented by Guiol Machado and Schinazi ('11)
- \triangleright Variations of the above

Toy models for time evolution of a system consisting of a population of "species".

Common features

- \blacktriangleright Population is asymptotically large.
- \blacktriangleright Fitness-based models:
	-

KORK STRAIN A BAR SHOP

What is the asymptotic fitness distribution ?

- Bak-Sneppen model ('93)
- \triangleright A model presented by Guiol Machado and Schinazi ('11)
- \triangleright Variations of the above

Toy models for time evolution of a system consisting of a population of "species".

Common features

- \blacktriangleright Population is asymptotically large.
- \blacktriangleright Fitness-based models:
	- \blacktriangleright "At birth" each species is assigned a random "fitness" independent of past.

KORK STRAIN A BAR SHOP

 \blacktriangleright Time evolution eliminates species with lowest fitness from the system.

What is the asymptotic fitness distribution ?

- Bak-Sneppen model ('93)
- \triangleright A model presented by Guiol Machado and Schinazi ('11)
- \triangleright Variations of the above

Toy models for time evolution of a system consisting of a population of "species".

Common features

- \blacktriangleright Population is asymptotically large.
- \blacktriangleright Fitness-based models:
	- ▶ "At birth" each species is assigned a random "fitness" independent of past.

KORK ERKER ADE YOUR

 \blacktriangleright Time evolution eliminates species with lowest fitness from the system.

What is the asymptotic fitness distribution ?

- Bak-Sneppen model ('93)
- \triangleright A model presented by Guiol Machado and Schinazi ('11)
- \triangleright Variations of the above

Toy models for time evolution of a system consisting of a population of "species".

Common features

- \blacktriangleright Population is asymptotically large.
- \blacktriangleright Fitness-based models:
	- \blacktriangleright "At birth" each species is assigned a random "fitness" independent of past.

KOD KARD KED KED E YORA

 \blacktriangleright Time evolution eliminates species with lowest fitness from the system.

What is the asymptotic fitness distribution ?

- Bak-Sneppen model ('93)
- \triangleright A model presented by Guiol Machado and Schinazi ('11)
- \triangleright Variations of the above

Toy models for time evolution of a system consisting of a population of "species".

Common features

- \blacktriangleright Population is asymptotically large.
- \blacktriangleright Fitness-based models:
	- \blacktriangleright "At birth" each species is assigned a random "fitness" independent of past.

KOD KARD KED KED E YORA

 \blacktriangleright Time evolution eliminates species with lowest fitness from the system.

What is the asymptotic fitness distribution ?

- Bak-Sneppen model ('93)
- \triangleright A model presented by Guiol Machado and Schinazi ('11)
- \triangleright Variations of the above

Toy models for time evolution of a system consisting of a population of "species".

Common features

- \blacktriangleright Population is asymptotically large.
- \blacktriangleright Fitness-based models:
	- \blacktriangleright "At birth" each species is assigned a random "fitness" independent of past.

KOD KARD KED KED E YORA

 \blacktriangleright Time evolution eliminates species with lowest fitness from the system.

What is the asymptotic fitness distribution ?

- Bak-Sneppen model ('93)
- \triangleright A model presented by Guiol Machado and Schinazi ('11)
- \triangleright Variations of the above

Toy models for time evolution of a system consisting of a population of "species".

Common features

- \blacktriangleright Population is asymptotically large.
- \blacktriangleright Fitness-based models:
	- \blacktriangleright "At birth" each species is assigned a random "fitness" independent of past.

KOD KARD KED KED E YORA

 \blacktriangleright Time evolution eliminates species with lowest fitness from the system.

What is the asymptotic fitness distribution ?

- \blacktriangleright Bak-Sneppen model ('93)
- \triangleright A model presented by Guiol Machado and Schinazi ('11)
- \triangleright Variations of the above

Toy models for time evolution of a system consisting of a population of "species".

Common features

- \blacktriangleright Population is asymptotically large.
- \blacktriangleright Fitness-based models:
	- \blacktriangleright "At birth" each species is assigned a random "fitness" independent of past.

KORK STRATER STRAKER

 \blacktriangleright Time evolution eliminates species with lowest fitness from the system.

What is the asymptotic fitness distribution ?

- \blacktriangleright Bak-Sneppen model ('93)
- \triangleright A model presented by Guiol Machado and Schinazi ('11)
- \triangleright Variations of the above

Toy models for time evolution of a system consisting of a population of "species".

Common features

- \blacktriangleright Population is asymptotically large.
- \blacktriangleright Fitness-based models:
	- \blacktriangleright "At birth" each species is assigned a random "fitness" independent of past.

KORKA SERKER ORA

 \blacktriangleright Time evolution eliminates species with lowest fitness from the system.

What is the asymptotic fitness distribution ?

- \blacktriangleright Bak-Sneppen model ('93)
- \triangleright A model presented by Guiol Machado and Schinazi ('11)
- \blacktriangleright Variations of the above

One of the first models claimed through numerical simulations to exhibit self-organized criticality.

A discrete time ergodic Markov processes with

- \triangleright N species arranged on the vertices of a cycle (or any finite connected graph).
- Each is a assigned an initial fitness, IID $U[0, 1]$.
- \triangleright Evolution: at each time, the species with lowest fitness and its neighbors are replaced by new species with ID $U[0, 1]$ fitnesses.

Simulations suggest

$$
\pi_N \underset{N \to \infty}{\to}
$$
 IID U[p_c , 1], where $p_c \sim 2/3$,

KORK STRAIN A BAR SHOP

One of the first models claimed through numerical simulations to exhibit self-organized criticality.

A discrete time ergodic Markov processes with

- \triangleright N species arranged on the vertices of a cycle (or any finite connected graph).
- Each is a assigned an initial fitness, IID $U[0, 1]$.
- \triangleright Evolution: at each time, the species with lowest fitness and its neighbors are replaced by new species with ID $U[0, 1]$ fitnesses.

Simulations suggest

$$
\pi_N \underset{N \to \infty}{\to} \text{IID } \text{U}[p_c, 1], \text{ where } p_c \sim 2/3,
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

One of the first models claimed through numerical simulations to exhibit self-organized criticality.

A discrete time ergodic Markov processes with

- \triangleright N species arranged on the vertices of a cycle (or any finite connected graph).
- Each is a assigned an initial fitness, IID $U[0, 1]$.
- \triangleright Evolution: at each time, the species with lowest fitness and its neighbors are replaced by new species with ID $U[0, 1]$ fitnesses.

Simulations suggest

$$
\pi_N \underset{N \to \infty}{\to}
$$
 IID U[p_c , 1], where $p_c \sim 2/3$,

KORK ERKER ADE YOUR

One of the first models claimed through numerical simulations to exhibit self-organized criticality.

A discrete time ergodic Markov processes with

- \triangleright N species arranged on the vertices of a cycle (or any finite connected graph).
- Each is a assigned an initial fitness, IID $U[0, 1]$.
- \triangleright Evolution: at each time, the species with lowest fitness and its neighbors are replaced by new species with IID $U[0, 1]$ fitnesses.

Simulations suggest

 $\pi_{N} \rightarrow \atop N \rightarrow \infty}$ IID U[$p_{c}, 1$], where $p_{c} \sim 2/3$,

KORK ERKER ADE YOUR

One of the first models claimed through numerical simulations to exhibit self-organized criticality.

A discrete time ergodic Markov processes with

- \triangleright N species arranged on the vertices of a cycle (or any finite connected graph).
- Each is a assigned an initial fitness, IID $U[0, 1]$.
- \triangleright Evolution: at each time, the species with lowest fitness and its neighbors are replaced by new species with IID $U[0, 1]$ fitnesses.

Simulations suggest

 $\pi_{N} \rightarrow \atop N \rightarrow \infty}$ IID U[$p_{c}, 1$], where $p_{c} \sim 2/3$,

KORK ERKER ADE YOUR

One of the first models claimed through numerical simulations to exhibit self-organized criticality.

A discrete time ergodic Markov processes with

- \triangleright N species arranged on the vertices of a cycle (or any finite connected graph).
- Each is a assigned an initial fitness, IID $U[0, 1]$.
- \triangleright Evolution: at each time, the species with lowest fitness and its neighbors are replaced by new species with IID $U[0, 1]$ fitnesses.

Simulations suggest

$$
\pi_{N} \underset{N \to \infty}{\to} \text{IID } U[p_c, 1], \text{ where } p_c \sim 2/3,
$$

KORK ERKER ADE YOUR

One of the first models claimed through numerical simulations to exhibit self-organized criticality.

A discrete time ergodic Markov processes with

- \triangleright N species arranged on the vertices of a cycle (or any finite connected graph).
- Each is a assigned an initial fitness, IID $U[0, 1]$.
- \triangleright Evolution: at each time, the species with lowest fitness and its neighbors are replaced by new species with IID $U[0, 1]$ fitnesses.

Simulations suggest

$$
\pi_{N} \underset{N \to \infty}{\to} \text{IID } U[p_c, 1], \text{ where } p_c \sim 2/3,
$$

KORK ERKER ADE YOUR

and π_N is the stationary distribution.

Open.

An avalanche from threshold p is a part of the path from time all fitnesses are $\geq p$ until next time this happens.

The avalanches provide a natural regenerative structure for the process.

- \triangleright Evolution of avalanche depends on the past only through the location of site with lowest fitness when started.
- \triangleright As a result, the sequence of durations of avalanches are IID, and so is the number of vertices affected during each avalanche, AKA the range of the avalanche.

KORK STRAIN A BAR SHOP

An avalanche from threshold p is a part of the path from time all fitnesses are $\geq p$ until next time this happens.

The avalanches provide a natural regenerative structure for the process.

- \triangleright Evolution of avalanche depends on the past only through the location of site with lowest fitness when started.
- \triangleright As a result, the sequence of durations of avalanches are IID, and so is the number of vertices affected during each avalanche, AKA the range of the avalanche.

KORK STRAIN A BAR SHOP

An avalanche from threshold p is a part of the path from time all fitnesses are $\geq p$ until next time this happens.

The avalanches provide a natural regenerative structure for the process.

- \triangleright Evolution of avalanche depends on the past only through the location of site with lowest fitness when started.
- \triangleright As a result, the sequence of durations of avalanches are IID, and so is the number of vertices affected during each avalanche, AKA the range of the avalanche.

An avalanche from threshold p is a part of the path from time all fitnesses are $\geq p$ until next time this happens.

The avalanches provide a natural regenerative structure for the process.

- \triangleright Evolution of avalanche depends on the past only through the location of site with lowest fitness when started.
- \triangleright As a result, the sequence of durations of avalanches are IID, and so is the number of vertices affected during each avalanche, AKA the range of the avalanche.

KORK STRAIN A BAR SHOP

Notation

 $D_N(p)$ = Duration of avalanche from threshold p $R_N(p)$ = Range of avalance from threshold p $P_N(p) = P(R_N(p) = N)$

Consider an avalanche from threshold p on $\mathbb Z$ with initial fitness configuration

$$
\ldots,1,1,\ldots,\underset{\substack{\uparrow \\ \text{origin} \\ \text{origin}}}}{p},1,1,\ldots
$$

As before, let

 $D_{\infty}(p) =$ Duration of avalanche $R_{\infty}(p)$ = Range of avalanche $P_{\infty}(p) = P(R_{\infty}(p) = \infty).$

$ED_N(p) \to ED_\infty(p), ER_N(p) \to ER_\infty(p), P_N(p) \to P_\infty(p).$

 \triangleright Asymptotic properties can be studied by considering the infinite system.

 \blacktriangleright Main idea: embedding in and coupling of finite system in infinite system.

KORK STRAIN A BAR SHOP

Notation

 $D_N(p)$ = Duration of avalanche from threshold p $R_N(p)$ = Range of avalance from threshold p $P_N(p) = P(R_N(p) = N)$

Consider an avalanche from threshold p on $\mathbb Z$ with initial fitness configuration

$$
\ldots,1,1,\ldots,\underset{\substack{\uparrow \\ \text{origin} \\ \text{origin}}}{\uparrow},1,1,\ldots
$$

As before, let

 $D_{\infty}(p) =$ Duration of avalanche $R_{\infty}(p) =$ Range of avalanche $P_{\infty}(p) = P(R_{\infty}(p) = \infty).$

Theorem 1 (Meester-Znamenski '04) $ED_N(p) \to ED_\infty(p), ER_N(p) \to ER_\infty(p), P_N(p) \to P_\infty(p).$

 \triangleright Asymptotic properties can be studied by considering the infinite system.

 \blacktriangleright Main idea: embedding in and coupling of finite system in infinite system.

Notation

 $D_N(p)$ = Duration of avalanche from threshold p $R_N(p)$ = Range of avalance from threshold p $P_N(p) = P(R_N(p) = N)$

Consider an avalanche from threshold p on $\mathbb Z$ with initial fitness configuration

$$
\ldots,1,1,\ldots,\underset{\substack{\uparrow \\ \text{origin} \\ \text{origin}}}}{p},1,1,\ldots
$$

As before, let

 $D_{\infty}(p) =$ Duration of avalanche $R_{\infty}(p) =$ Range of avalanche $P_{\infty}(p) = P(R_{\infty}(p) = \infty).$

Theorem 1 (Meester-Znamenski '04) $ED_N(p) \to ED_\infty(p), ER_N(p) \to ER_\infty(p), P_N(p) \to P_\infty(p).$

 \triangleright Asymptotic properties can be studied by considering the infinite system.

 \blacktriangleright Main idea: embedding in and coupling of finite system in infinite system.

Notation

 $D_N(p)$ = Duration of avalanche from threshold p $R_N(p)$ = Range of avalance from threshold p $P_N(p) = P(R_N(p) = N)$

Consider an avalanche from threshold p on $\mathbb Z$ with initial fitness configuration

$$
\ldots,1,1,\ldots,\underset{\substack{\uparrow \\ \text{origin} \\ \text{origin}}}}{p},1,1,\ldots
$$

As before, let

 $D_{\infty}(p) =$ Duration of avalanche $R_{\infty}(p) =$ Range of avalanche $P_{\infty}(p) = P(R_{\infty}(p) = \infty).$

Theorem 1 (Meester-Znamenski '04) $ED_N(p) \to ED_\infty(p), ER_N(p) \to ER_\infty(p), P_N(p) \to P_\infty(p).$

 \triangleright Asymptotic properties can be studied by considering the infinite system.

 \blacktriangleright Main idea: embedding in and coupling of finite system in infinite system.

Notation

 $D_N(p)$ = Duration of avalanche from threshold p $R_N(p)$ = Range of avalance from threshold p $P_N(p) = P(R_N(p) = N)$

Consider an avalanche from threshold p on $\mathbb Z$ with initial fitness configuration

$$
\ldots,1,1,\ldots,\underset{\substack{\uparrow \\ \text{origin} \\ \text{origin}}}}{p},1,1,\ldots
$$

As before, let

 $D_{\infty}(p) =$ Duration of avalanche $R_{\infty}(p) =$ Range of avalanche $P_{\infty}(p) = P(R_{\infty}(p) = \infty).$

Theorem 1 (Meester-Znamenski '04)

 $ED_N(p) \to ED_\infty(p), ER_N(p) \to ER_\infty(p), P_N(p) \to P_\infty(p).$

 \triangleright Asymptotic properties can be studied by considering the infinite system.

 \blacktriangleright Main idea: embedding in and coupling of finite system in infinite system.

Notation

 $D_N(p)$ = Duration of avalanche from threshold p $R_N(p)$ = Range of avalance from threshold p $P_N(p) = P(R_N(p) = N)$

Consider an avalanche from threshold p on $\mathbb Z$ with initial fitness configuration

$$
\ldots,1,1,\ldots,\underset{\substack{\uparrow \\ \text{origin} \\ \text{origin}}}}{p},1,1,\ldots
$$

As before, let

 $D_{\infty}(p) =$ Duration of avalanche $R_{\infty}(p) =$ Range of avalanche $P_{\infty}(p) = P(R_{\infty}(p) = \infty).$

Theorem 1 (Meester-Znamenski '04)

 $ED_N(p) \to ED_\infty(p), ER_N(p) \to ER_\infty(p), P_N(p) \to P_\infty(p).$

- \triangleright Asymptotic properties can be studied by considering the infinite system.
- \blacktriangleright Main idea: embedding in and coupling of finite system in infinite system.

Define

$$
p_D = \inf\{p : ED_{\infty}(p) = \infty\}
$$

\n
$$
p_R = \inf\{p : ER_{\infty}(p) = \infty\}
$$

\n
$$
p_P = \inf\{p : P_{\infty}(p) > 0\}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Theorem 2 (Meester-Znamenski '03,Meester-Znamenski '04)

1.
$$
0 < p_D = p_R \le p_P < 1 - e^{-68}
$$
.

2. If
$$
p_R = p_P
$$
, then $\pi_N \underset{N \to \infty}{\to}$ IID U[pP, 1].

Letting F be the fitness at some distinguished site 0, then

1.
$$
\pi_N(F \leq p_D) \to 0
$$
.
2. $\pi_N(F \in \cdot | F > p_P) \to U[p_P, 1]$.

Define

$$
p_D = \inf\{p : ED_{\infty}(p) = \infty\}
$$

\n
$$
p_R = \inf\{p : ER_{\infty}(p) = \infty\}
$$

\n
$$
p_P = \inf\{p : P_{\infty}(p) > 0\}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Theorem 2 (Meester-Znamenski '03,Meester-Znamenski '04)

1.
$$
0 < p_D = p_R \leq p_P < 1 - e^{-68}.
$$
\n2. If $p_R = p_P$, then $\pi_N \underset{N \to \infty}{\to} \text{IID } U[p_P, 1].$

Letting F be the fitness at some distinguished site 0, then

1.
$$
\pi_N(F \leq p_D) \to 0.
$$

2. $\pi_N(F \in \cdot | F > p_P) \to U[p_P, 1].$

Define

$$
p_D = \inf\{p : ED_{\infty}(p) = \infty\}
$$

\n
$$
p_R = \inf\{p : ER_{\infty}(p) = \infty\}
$$

\n
$$
p_P = \inf\{p : P_{\infty}(p) > 0\}
$$

K ロ X K (P) X (E) X (E) X (E) X (P) Q (P)

Theorem 2 (Meester-Znamenski '03,Meester-Znamenski '04)

1.
$$
0 < p_D = p_R \leq p_P < 1 - e^{-68}.
$$
\n2. If $p_R = p_P$, then $\pi_N \underset{N \to \infty}{\to} \text{IID } U[p_P, 1].$

Letting F be the fitness at some distinguished site 0, then

Proposition 1

1.
$$
\pi_N(F \le p_D) \to 0
$$
.
2. $\pi_N(F \in \cdot | F > p_P) \to U[p_P, 1]$.

Define

$$
p_D = \inf\{p : ED_{\infty}(p) = \infty\}
$$

\n
$$
p_R = \inf\{p : ER_{\infty}(p) = \infty\}
$$

\n
$$
p_P = \inf\{p : P_{\infty}(p) > 0\}
$$

K ロ X K (P) X (E) X (E) X (E) X (P) Q (P)

Theorem 2 (Meester-Znamenski '03,Meester-Znamenski '04)

1.
$$
0 < p_D = p_R \le p_P < 1 - e^{-68}
$$
.
2. If $p_R = p_P$, then $\pi_N \underset{N \to \infty}{\to} IID U[p_P, 1]$.

Letting F be the fitness at some distinguished site 0, then

Proposition 1

1.
$$
\pi_N(F \le p_D) \to 0
$$
.
2. $\pi_N(F \in \cdot | F > p_P) \to U[p_P, 1]$.

Bak Sneppen, a little more

Proposition 2 (B. WIP)

 Let

$$
\rho = \inf_{p,d} \sum_{k=1}^{\infty} \frac{1}{d_k p_k},
$$

where the infimum is taken over all probability distributions (p_1, p_2, \dots) on $\mathbb N$ and all-integer nondecreasing valued sequences $(d_k)_{k \in \mathbb{N}}$ with the growth constraint $d_1 = 1, d_{k+1} < 2d_k$ for $k > 1$. Then

$$
p_P\leq 1-e^{-\rho},
$$

- Simulations give $\rho < 11.3$.
- ► We need to get to $\ln \frac{1}{3} = 1.09861228867$.

If $P(R_{\infty}(p) > r) > cr^{-\alpha}$ for some $\alpha < 1$, then $p_P \leq p$.

► Roughly speaking, if $R_{\infty}(p)$ "little" short of being integrable, then p is already

Bak Sneppen, a little more

Proposition 2 (B. WIP)

 Let

$$
\rho = \inf_{p,d} \sum_{k=1}^{\infty} \frac{1}{d_k p_k},
$$

where the infimum is taken over all probability distributions (p_1, p_2, \dots) on $\mathbb N$ and all-integer nondecreasing valued sequences $(d_k)_{k \in \mathbb{N}}$ with the growth constraint $d_1 = 1, d_{k+1} < 2d_k$ for $k > 1$. Then

$$
p_P\leq 1-e^{-\rho},
$$

Simulations give $\rho < 11.3$.

► We need to get to $- \ln \frac{1}{3} = 1.09861228867$.

If $P(R_{\infty}(p) > r) > cr^{-\alpha}$ for some $\alpha < 1$, then $p_P \leq p$.

► Roughly speaking, if $R_{\infty}(p)$ "little" short of being integrable, then p is already
Bak Sneppen, a little more

Proposition 2 (B. WIP)

 Let

$$
\rho = \inf_{p,d} \sum_{k=1}^{\infty} \frac{1}{d_k p_k},
$$

where the infimum is taken over all probability distributions (p_1, p_2, \dots) on $\mathbb N$ and all-integer nondecreasing valued sequences $(d_k)_{k \in \mathbb{N}}$ with the growth constraint $d_1 = 1, d_{k+1} < 2d_k$ for $k > 1$. Then

$$
p_P\leq 1-e^{-\rho},
$$

- Simulations give $\rho < 11.3$.
- ► We need to get to $\ln \frac{1}{3} = 1.09861228867$.

If $P(R_{\infty}(p) > r) > cr^{-\alpha}$ for some $\alpha < 1$, then $p_P \leq p$.

► Roughly speaking, if $R_{\infty}(p)$ "little" short of being integrable, then p is already

Bak Sneppen, a little more

Proposition 2 (B. WIP)

 Let

$$
\rho = \inf_{p,d} \sum_{k=1}^{\infty} \frac{1}{d_k p_k},
$$

where the infimum is taken over all probability distributions (p_1, p_2, \dots) on $\mathbb N$ and all-integer nondecreasing valued sequences $(d_k)_{k \in \mathbb{N}}$ with the growth constraint $d_1 = 1, d_{k+1} < 2d_k$ for $k > 1$. Then

$$
p_P\leq 1-e^{-\rho},
$$

- Simulations give $\rho < 11.3$.
- ► We need to get to $\ln \frac{1}{3} = 1.09861228867$.

Theorem 3 (B. WIP) If $P(R_{\infty}(p) > r) > cr^{-\alpha}$ for some $\alpha < 1$, then $p_P < p$.

► Roughly speaking, if $R_{\infty}(p)$ "little" short of being integrable, then p is already

Bak Sneppen, a little more

Proposition 2 (B. WIP)

 Let

$$
\rho = \inf_{p,d} \sum_{k=1}^{\infty} \frac{1}{d_k p_k},
$$

where the infimum is taken over all probability distributions (p_1, p_2, \dots) on $\mathbb N$ and all-integer nondecreasing valued sequences $(d_k)_{k \in \mathbb{N}}$ with the growth constraint $d_1 = 1, d_{k+1} < 2d_k$ for $k > 1$. Then

$$
p_P\leq 1-e^{-\rho},
$$

- Simulations give $\rho < 11.3$.
- ► We need to get to $\ln \frac{1}{3} = 1.09861228867$.

Theorem 3 (B. WIP)

If $P(R_{\infty}(p) > r) > cr^{-\alpha}$ for some $\alpha < 1$, then $p_P < p$.

► Roughly speaking, if $R_{\infty}(p)$ "little" short of being integrable, then p is already above p_P.

Bak Sneppen – on proofs

- \triangleright Tool: Graphical representation of avalanches on $\mathbb Z$, due to Meester and his coauthors.
- \triangleright Switch from uniform fitnesses to $Exp(1)$. This allows for Poisson process techniques.

At end of avalanche from threshold b, fitness of sites in its range IID $b+\text{Exp}(1)$.

- \blacktriangleright To each site attach a rate-1 Poisson process, processes are independent.
- **In Suppose the avalanche from threshold b starting from the origin has the range** given by the arrow.
- \triangleright Fitness distribution of sites in range coincides with the first arrivals of the Poisson processes above b.
- The range of avalanche from threshold $b + \epsilon$ will be at least $\frac{3}{2} \times R_b$, if at least one of the avalanches in the orange region extends to the right at least as R_b did.

- \triangleright Allows to approach through thinning of a Poisson Point Process.
- \triangleright For large enough b, one can show that exists an infinite cascade of such avalanches below fitness $b + \epsilon$.

Joint with R.C. Silva

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

What would be a "proper" tractable analog for Bak-Sneppen ?

The difficulty in the Bak-Sneppen model stems from the following:

- \triangleright Use complete graph geometry to locate the global minimum.
- \triangleright Use "nearest neighbor" geometry to determine at what vertices species will be

KORK ERKER ADE YOUR

- A first attempt at this question would be
	- \triangleright Use one geometry.

What would be a "proper" tractable analog for Bak-Sneppen ?

The difficulty in the Bak-Sneppen model stems from the following:

- \triangleright Use complete graph geometry to locate the global minimum.
- \triangleright Use "nearest neighbor" geometry to determine at what vertices species will be

KORK ERKER ADE YOUR

A first attempt at this question would be

 \triangleright Use one geometry.

What would be a "proper" tractable analog for Bak-Sneppen ?

The difficulty in the Bak-Sneppen model stems from the following:

- \triangleright Use complete graph geometry to locate the global minimum.
- \triangleright Use "nearest neighbor" geometry to determine at what vertices species will be

KORK ERKER ADE YOUR

- A first attempt at this question would be
	- \triangleright Use one geometry.

What would be a "proper" tractable analog for Bak-Sneppen ?

The difficulty in the Bak-Sneppen model stems from the following:

- \triangleright Use complete graph geometry to locate the global minimum.
- \triangleright Use "nearest neighbor" geometry to determine at what vertices species will be replaced.

KORK ERKER ADE YOUR

- A first attempt at this question would be
	- \triangleright Use one geometry.

What would be a "proper" tractable analog for Bak-Sneppen ?

The difficulty in the Bak-Sneppen model stems from the following:

- \triangleright Use complete graph geometry to locate the global minimum.
- \triangleright Use "nearest neighbor" geometry to determine at what vertices species will be replaced.

KORK ERKER ADE YOUR

A first attempt at this question would be

 \blacktriangleright Use one geometry.

What would be a "proper" tractable analog for Bak-Sneppen ?

The difficulty in the Bak-Sneppen model stems from the following:

- \triangleright Use complete graph geometry to locate the global minimum.
- \triangleright Use "nearest neighbor" geometry to determine at what vertices species will be replaced.

KORKA SERKER ORA

- A first attempt at this question would be
	- \blacktriangleright Use one geometry.

Consider a finite, connected (undirected) graph $G = (V, E)$.

Initially

- Assign IID U[0, 1] fitnesses to each $v \in V$.
- \triangleright Set X_0 as the vertex with lowest fitness.

Time evolution

- ► Given X_n , set X_{n+1} to be the vertex with minimal fitness among $u \sim X_n$ and X_n itself.
- ► Set fitness of all elements in neighborhood of X_{n+1} as IID U[0, 1], independent of past.

Observe

 \blacktriangleright Markov chain on state space = product of V and [0, 1]-valued functions on V.

KORK STRAIN A BAR SHOP

 \triangleright Chain is ergodic.

Consider a finite, connected (undirected) graph $G = (V, E)$.

Initially

- ► Assign IID U[0, 1] fitnesses to each $v \in V$.
- \triangleright Set X_0 as the vertex with lowest fitness.

Time evolution

- ► Given X_n , set X_{n+1} to be the vertex with minimal fitness among $u \sim X_n$ and X_n itself.
- ► Set fitness of all elements in neighborhood of X_{n+1} as IID U[0, 1], independent of past.

Observe

 \blacktriangleright Markov chain on state space = product of V and [0, 1]-valued functions on V.

KORK STRAIN A BAR SHOP

 \triangleright Chain is ergodic.

Consider a finite, connected (undirected) graph $G = (V, E)$.

Initially

- Assign IID U[0, 1] fitnesses to each $v \in V$.
- \triangleright Set X_0 as the vertex with lowest fitness.

Time evolution

- ► Given X_n , set X_{n+1} to be the vertex with minimal fitness among $u \sim X_n$ and X_n itself.
- ► Set fitness of all elements in neighborhood of X_{n+1} as IID U[0, 1], independent of past.

Observe

 \blacktriangleright Markov chain on state space = product of V and [0, 1]-valued functions on V.

KORK STRAIN A BAR SHOP

 \triangleright Chain is ergodic.

Consider a finite, connected (undirected) graph $G = (V, E)$.

Initially

- Assign IID U[0, 1] fitnesses to each $v \in V$.
- \triangleright Set X_0 as the vertex with lowest fitness.

Time evolution

- ► Given X_n , set X_{n+1} to be the vertex with minimal fitness among $u \sim X_n$ and X_n itself.
- ► Set fitness of all elements in neighborhood of X_{n+1} as IID U[0, 1], independent of past.

Observe

In Markov chain on state space $=$ product of V and [0, 1]-valued functions on V.

KORK STRAIN A BAR SHOP

 \triangleright Chain is ergodic.

Consider a finite, connected (undirected) graph $G = (V, E)$.

Initially

- Assign IID U[0, 1] fitnesses to each $v \in V$.
- \triangleright Set X_0 as the vertex with lowest fitness.

Time evolution

- ► Given X_n , set X_{n+1} to be the vertex with minimal fitness among $u \sim X_n$ and X_n itself.
- ► Set fitness of all elements in neighborhood of X_{n+1} as IID U[0, 1], independent of past.

Observe

In Markov chain on state space $=$ product of V and [0, 1]-valued functions on V.

KORK ERKER ADE YOUR

 \triangleright Chain is ergodic.

Consider a finite, connected (undirected) graph $G = (V, E)$.

Initially

- Assign IID U[0, 1] fitnesses to each $v \in V$.
- \triangleright Set X_0 as the vertex with lowest fitness.

Time evolution

- ► Given X_n , set X_{n+1} to be the vertex with minimal fitness among $u \sim X_n$ and X_n itself.
- ► Set fitness of all elements in neighborhood of X_{n+1} as IID U[0, 1], independent of past.

Observe

In Markov chain on state space $=$ product of V and [0, 1]-valued functions on V.

KORK ERKER ADE YOUR

 \triangleright Chain is ergodic.

Consider a finite, connected (undirected) graph $G = (V, E)$.

Initially

- Assign IID U[0, 1] fitnesses to each $v \in V$.
- \triangleright Set X_0 as the vertex with lowest fitness.

Time evolution

- ► Given X_n , set X_{n+1} to be the vertex with minimal fitness among $u \sim X_n$ and X_n itself.
- ► Set fitness of all elements in neighborhood of X_{n+1} as IID U[0, 1], independent of past.

Observe

In Markov chain on state space = product of V and $[0, 1]$ -valued functions on V.

 \blacktriangleright Chain is ergodic.

Consider a finite, connected (undirected) graph $G = (V, E)$.

Initially

- Assign IID U[0, 1] fitnesses to each $v \in V$.
- \triangleright Set X_0 as the vertex with lowest fitness.

Time evolution

- ► Given X_n , set X_{n+1} to be the vertex with minimal fitness among $u \sim X_n$ and X_n itself.
- ► Set fitness of all elements in neighborhood of X_{n+1} as IID U[0, 1], independent of past.

Observe

In Markov chain on state space = product of V and $[0, 1]$ -valued functions on V.

KORKAR KERKER E VOOR

 \blacktriangleright Chain is ergodic.

Notation

- **►** For $v \in V$, $A_v = \{u \in V : \{u, v\} \in E \text{ or } u = v\}.$
- **► Random walk on** G: from $v \in V$ move to uniformly sampled $u \in A_v$.
- Stationary distribution: $\mu(v) = \frac{|A_v|}{\sum_{u \in V} |A_v|}$ $\frac{|A_V|}{|u \in V|A_u|}$.
- If U_1, \ldots, U_n are IID U[0, 1], then set $U(n, [0, 1])$ as the distribution

$$
P(U_1\in \cdot |U_1>\min\{U_2,\ldots,U_n\}).
$$

Theorem 4 (Silva-B.)

- ► Let $(Z_n^u : n \in \mathbb{Z}_+)$ be independent random walks on G with $Z_0^u = u$.
- \triangleright Sample X independently according to μ .
- \blacktriangleright Set

$$
\tau_v = \inf\{n \in \mathbb{Z}_+ : Z_n^X \in A_v\}, \text{ and } V_i = \{v \in V : \tau_v = i\}.
$$

KORKAR KERKER E VOOR

Given V_0, V_1, \ldots , assign fitnesses at each $v \in V$, which are independent and are

- 1. $U[0, 1]$ for $v \in A_X = V_0$.
- 2. $U(|A_{Z_i^X}|, [0,1])$ if $v \in V_i$, $i > 0$.

Notation

For $v \in V$, $A_v = \{u \in V : \{u, v\} \in E$ or $u = v\}$.

- **► Random walk on** G: from $v \in V$ move to uniformly sampled $u \in A_v$.
- Stationary distribution: $\mu(v) = \frac{|A_v|}{\sum_{u \in V} |A_v|}$ $\frac{|A_V|}{|u \in V|A_u|}$.
- If U_1, \ldots, U_n are IID U[0, 1], then set $U(n, [0, 1])$ as the distribution

 $P(U_1 \in \cdot | U_1 > \min\{U_2, \ldots, U_n\}).$

Theorem 4 (Silva-B.)

- ► Let $(Z_n^u : n \in \mathbb{Z}_+)$ be independent random walks on G with $Z_0^u = u$.
- \triangleright Sample X independently according to μ .
- \blacktriangleright Set

$$
\tau_v = \inf\{n \in \mathbb{Z}_+ : Z_n^X \in A_v\}, \text{ and } V_i = \{v \in V : \tau_v = i\}.
$$

KORKAR KERKER E VOOR

Given V_0, V_1, \ldots , assign fitnesses at each $v \in V$, which are independent and are

- 1. U[0, 1] for $v \in A_X = V_0$.
- 2. $U(|A_{Z_i^X}|, [0,1])$ if $v \in V_i$, $i > 0$.

Notation

- For $v \in V$, $A_v = \{u \in V : \{u, v\} \in E$ or $u = v\}$.
- ► Random walk on G: from $v \in V$ move to uniformly sampled $u \in A_v$.
- Stationary distribution: $\mu(v) = \frac{|A_v|}{\sum_{u \in V} |A_v|}$ $\frac{|A_V|}{|u \in V|A_u|}$.
- If U_1, \ldots, U_n are IID U[0, 1], then set $U(n, [0, 1])$ as the distribution

 $P(U_1 \in \cdot | U_1 > \min\{U_2, \ldots, U_n\}).$

Theorem 4 (Silva-B.)

- ► Let $(Z_n^u : n \in \mathbb{Z}_+)$ be independent random walks on G with $Z_0^u = u$.
- \triangleright Sample X independently according to μ .
- \blacktriangleright Set

$$
\tau_v = \inf\{n \in \mathbb{Z}_+ : Z_n^X \in A_v\}, \text{ and } V_i = \{v \in V : \tau_v = i\}.
$$

KORKAR KERKER E VOOR

Given V_0, V_1, \ldots , assign fitnesses at each $v \in V$, which are independent and are

- 1. U[0, 1] for $v \in A_X = V_0$.
- 2. $U(|A_{Z_i^X}|, [0,1])$ if $v \in V_i$, $i > 0$.

Notation

- For $v \in V$, $A_v = \{u \in V : \{u, v\} \in E$ or $u = v\}$.
- ► Random walk on G: from $v \in V$ move to uniformly sampled $u \in A_v$.
- Stationary distribution: $\mu(v) = \frac{|A_v|}{\sum_{u \in V} |A_v|}$ $\frac{|A_V|}{|u \in V|A_u|}$.
- If U_1, \ldots, U_n are IID U[0, 1], then set $U(n, [0, 1])$ as the distribution

 $P(U_1 \in \cdot | U_1 > \min\{U_2, \ldots, U_n\}).$

Theorem 4 (Silva-B.)

- ► Let $(Z_n^u : n \in \mathbb{Z}_+)$ be independent random walks on G with $Z_0^u = u$.
- \triangleright Sample X independently according to μ .
- \blacktriangleright Set

$$
\tau_v = \inf\{n \in \mathbb{Z}_+ : Z_n^X \in A_v\}, \text{ and } V_i = \{v \in V : \tau_v = i\}.
$$

KORKAR KERKER E VOOR

Given V_0, V_1, \ldots , assign fitnesses at each $v \in V$, which are independent and are

- 1. $U[0, 1]$ for $v \in A_X = V_0$.
- 2. $U(|A_{Z_i^X}|, [0,1])$ if $v \in V_i$, $i > 0$.

Notation

- For $v \in V$, $A_v = \{u \in V : \{u, v\} \in E$ or $u = v\}$.
- ► Random walk on G: from $v \in V$ move to uniformly sampled $u \in A_v$.
- Stationary distribution: $\mu(v) = \frac{|A_v|}{\sum_{u \in V} |A_v|}$ $\frac{|A_V|}{|u \in V|A_u|}$.
- If U_1, \ldots, U_n are IID U[0, 1], then set $U(n, [0, 1])$ as the distribution

$$
P(U_1\in\cdot|U_1>\min\{U_2,\ldots,U_n\}).
$$

Theorem 4 (Silva-B.)

- ► Let $(Z_n^u : n \in \mathbb{Z}_+)$ be independent random walks on G with $Z_0^u = u$.
- \triangleright Sample X independently according to μ .
- Set

$$
\tau_v = \inf\{n \in \mathbb{Z}_+ : Z_n^X \in A_v\}, \text{ and } V_i = \{v \in V : \tau_v = i\}.
$$

KORKAR KERKER E VOOR

Given V_0, V_1, \ldots , assign fitnesses at each $v \in V$, which are independent and are

- 1. U[0, 1] for $v \in A_X = V_0$.
- 2. $U(|A_{Z_i^X}|, [0,1])$ if $v \in V_i$, $i > 0$.

Notation

- For $v \in V$, $A_v = \{u \in V : \{u, v\} \in E \text{ or } u = v\}.$
- ► Random walk on G: from $v \in V$ move to uniformly sampled $u \in A_v$.
- Stationary distribution: $\mu(v) = \frac{|A_v|}{\sum_{u \in V} |A_v|}$ $\frac{|A_V|}{|u \in V|A_u|}$.
- If U_1, \ldots, U_n are IID U[0, 1], then set $U(n, [0, 1])$ as the distribution

$$
P(U_1\in\cdot|U_1>\min\{U_2,\ldots,U_n\}).
$$

Theorem 4 (Silva-B.)

- ► Let $(Z_n^u : n \in \mathbb{Z}_+)$ be independent random walks on G with $Z_0^u = u$.
- \triangleright Sample X independently according to μ .
- \blacktriangleright Set

$$
\tau_v=\inf\{n\in\mathbb{Z}_+: Z_n^X\in A_v\}, \text{ and } V_i=\{v\in V: \tau_v=i\}.
$$

KORKAR KERKER E VOOR

Given V_0, V_1, \ldots , assign fitnesses at each $v \in V$, which are independent and are

- 1. U[0, 1] for $v \in A_X = V_0$.
- 2. $U(|A_{Z_i^X}|, [0,1])$ if $v \in V_i$, $i > 0$.

Corollary 1

If G is d-regular, then the stationary distribution for the local Bak-Sneppen satisfies:

- \blacktriangleright X is uniform.
- \triangleright Given X, the fitnesses are independent and
	- 1. $U[0, 1]$ for vertices in A_X .
	- 2. $U(d + 1, [0, 1])$ for all other vertices.

Now send size to infinity

Suppose that $(V_n : n \in \mathbb{N})$ is an increasing sequence of finite sets. For each n, let $G_n = (V_n, E_n)$ be a d-regular connected graph. Then

 \triangleright The fitnesses under the stationary distribution for the local Bak-Sneppen on G_n converge weakly to an IID measure with marginal $U(d + 1, [0, 1])$.

KORK STRAIN A BAR SHOP

- \blacktriangleright IID structure, as expected for Bak-Sneppen.
- \triangleright Unlike Bak-Sneppen: no threshold.

Corollary 1

If G is d-regular, then the stationary distribution for the local Bak-Sneppen satisfies:

- \blacktriangleright X is uniform.
- \triangleright Given X, the fitnesses are independent and
	- 1. $U[0, 1]$ for vertices in A_X .
	- 2. $U(d + 1, [0, 1])$ for all other vertices.

Now send size to infinity

Suppose that $(V_n : n \in \mathbb{N})$ is an increasing sequence of finite sets. For each n, let $G_n = (V_n, E_n)$ be a d-regular connected graph. Then

 \triangleright The fitnesses under the stationary distribution for the local Bak-Sneppen on G_n converge weakly to an IID measure with marginal $U(d + 1, [0, 1])$.

KORK STRAIN A BAR SHOP

- \blacktriangleright IID structure, as expected for Bak-Sneppen.
- \triangleright Unlike Bak-Sneppen: no threshold.

Corollary 1

If G is d-regular, then the stationary distribution for the local Bak-Sneppen satisfies:

- \blacktriangleright X is uniform.
- \triangleright Given X, the fitnesses are independent and
	- 1. $U[0, 1]$ for vertices in A_X .
	- 2. $U(d + 1, [0, 1])$ for all other vertices.

Now send size to infinity

Corollary 2

Suppose that $(V_n : n \in \mathbb{N})$ is an increasing sequence of finite sets. For each n, let $G_n = (V_n, E_n)$ be a d-regular connected graph. Then

 \triangleright The fitnesses under the stationary distribution for the local Bak-Sneppen on G_n converge weakly to an IID measure with marginal $U(d + 1, [0, 1])$.

- \blacktriangleright IID structure, as expected for Bak-Sneppen.
- \triangleright Unlike Bak-Sneppen: no threshold.

Corollary 1

If G is d-regular, then the stationary distribution for the local Bak-Sneppen satisfies:

- \blacktriangleright X is uniform.
- \triangleright Given X, the fitnesses are independent and
	- 1. $U[0, 1]$ for vertices in A_X .
	- 2. $U(d + 1, [0, 1])$ for all other vertices.

Now send size to infinity

Corollary 2

Suppose that $(V_n : n \in \mathbb{N})$ is an increasing sequence of finite sets. For each n, let $G_n = (V_n, E_n)$ be a d-regular connected graph. Then

 \triangleright The fitnesses under the stationary distribution for the local Bak-Sneppen on G_n converge weakly to an IID measure with marginal $U(d + 1, [0, 1])$.

- \blacktriangleright IID structure, as expected for Bak-Sneppen.
- \triangleright Unlike Bak-Sneppen: no threshold.

Corollary 1

If G is d-regular, then the stationary distribution for the local Bak-Sneppen satisfies:

- \blacktriangleright X is uniform.
- \triangleright Given X, the fitnesses are independent and
	- 1. $U[0, 1]$ for vertices in A_X .
	- 2. $U(d + 1, [0, 1])$ for all other vertices.

Now send size to infinity

Corollary 2

Suppose that $(V_n : n \in \mathbb{N})$ is an increasing sequence of finite sets. For each n, let $G_n = (V_n, E_n)$ be a d-regular connected graph. Then

 \triangleright The fitnesses under the stationary distribution for the local Bak-Sneppen on G_n converge weakly to an IID measure with marginal $U(d + 1, [0, 1])$.

- \blacktriangleright IID structure, as expected for Bak-Sneppen.
- \blacktriangleright Unlike Bak-Sneppen: no threshold.

KOX KOX KEX KEX E 1990

Why ?

- \blacktriangleright Have population growth be part of model, not external parameter.
- \blacktriangleright Tractability.

Construction

- In The population size is a reflected random walk on \mathbb{Z}_+ (that is random walk minus its running minimum).
- \triangleright When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- \triangleright When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?

More precisely, letting $\hat{F}_n(f)$ denote the empirical fitness distribution

$$
\hat{F}_n(f) = \begin{cases} \text{prop. with fitness } \leq f & \text{if pop. size is } > 0 \\ \text{CDF of } \delta_0 & \text{otherwise.} \end{cases}
$$

KORK ERKER ADE YOUR

Why ?

- \blacktriangleright Have population growth be part of model, not external parameter.
- \blacktriangleright Tractability.

Construction

- In The population size is a reflected random walk on \mathbb{Z}_+ (that is random walk minus its running minimum).
- \triangleright When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- \triangleright When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?

More precisely, letting $\hat{F}_n(f)$ denote the empirical fitness distribution

$$
\hat{F}_n(f) = \begin{cases} \text{prop. with fitness } \leq f & \text{if pop. size is } > 0 \\ \text{CDF of } \delta_0 & \text{otherwise.} \end{cases}
$$

KORK ERKER ADE YOUR

Why ?

- \blacktriangleright Have population growth be part of model, not external parameter.
- \blacktriangleright Tractability.

Construction

- In The population size is a reflected random walk on \mathbb{Z}_+ (that is random walk minus its running minimum).
- \triangleright When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- \triangleright When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?

More precisely, letting $\hat{F}_n(f)$ denote the empirical fitness distribution

$$
\hat{F}_n(f) = \begin{cases} \text{prop. with fitness } \leq f & \text{if pop. size is } > 0 \\ \text{CDF of } \delta_0 & \text{otherwise.} \end{cases}
$$

KORK ERKER ADE YOUR

Why ?

- \blacktriangleright Have population growth be part of model, not external parameter.
- \blacktriangleright Tractability.

Construction

- In The population size is a reflected random walk on \mathbb{Z}_+ (that is random walk minus its running minimum).
- \triangleright When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- \triangleright When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?

More precisely, letting $\hat{F}_n(f)$ denote the empirical fitness distribution

$$
\hat{F}_n(f) = \begin{cases} \text{prop. with fitness } \leq f & \text{if pop. size is } > 0 \\ \text{CDF of } \delta_0 & \text{otherwise.} \end{cases}
$$

KORK ERKER ADE YOUR

Why ?

- \blacktriangleright Have population growth be part of model, not external parameter.
- \blacktriangleright Tractability.

Construction

- In The population size is a reflected random walk on \mathbb{Z}_+ (that is random walk minus its running minimum).
- \triangleright When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- \triangleright When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?

More precisely, letting $\hat{F}_n(f)$ denote the empirical fitness distribution

$$
\hat{F}_n(f) = \begin{cases} \text{prop. with fitness } \leq f & \text{if pop. size is } > 0 \\ \text{CDF of } \delta_0 & \text{otherwise.} \end{cases}
$$

KORK ERKER ADE YOUR
Why ?

- \blacktriangleright Have population growth be part of model, not external parameter.
- \blacktriangleright Tractability.

Construction

- In The population size is a reflected random walk on \mathbb{Z}_+ (that is random walk minus its running minimum).
- \triangleright When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- \triangleright When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?

More precisely, letting $\hat{F}_n(f)$ denote the empirical fitness distribution

$$
\hat{F}_n(f) = \begin{cases} \text{prop. with fitness } \leq f & \text{if pop. size is } > 0 \\ \text{CDF of } \delta_0 & \text{otherwise.} \end{cases}
$$

KORK ERKER ADE YOUR

Why ?

- \blacktriangleright Have population growth be part of model, not external parameter.
- \blacktriangleright Tractability.

Construction

- In The population size is a reflected random walk on \mathbb{Z}_+ (that is random walk minus its running minimum).
- \triangleright When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- \triangleright When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?

More precisely, letting $\hat{F}_n(f)$ denote the empirical fitness distribution

$$
\hat{F}_n(f) = \begin{cases} \text{prop. with fitness } \leq f & \text{if pop. size is } > 0 \\ \text{CDF of } \delta_0 & \text{otherwise.} \end{cases}
$$

Why ?

- \blacktriangleright Have population growth be part of model, not external parameter.
- \blacktriangleright Tractability.

Construction

- In The population size is a reflected random walk on \mathbb{Z}_+ (that is random walk minus its running minimum).
- \triangleright When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.

 \triangleright When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?

More precisely, letting $\hat{F}_n(f)$ denote the empirical fitness distribution

$$
\hat{F}_n(f) = \begin{cases} \text{prop. with fitness } \leq f & \text{if pop. size is } > 0 \\ \text{CDF of } \delta_0 & \text{otherwise.} \end{cases}
$$

Why ?

- \blacktriangleright Have population growth be part of model, not external parameter.
- \blacktriangleright Tractability.

Construction

- In The population size is a reflected random walk on \mathbb{Z}_+ (that is random walk minus its running minimum).
- \triangleright When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- \triangleright When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?

More precisely, letting $\hat{F}_n(f)$ denote the empirical fitness distribution

$$
\hat{F}_n(f) = \begin{cases} \text{prop. with fitness } \leq f & \text{if pop. size is } > 0 \\ \text{CDF of } \delta_0 & \text{otherwise.} \end{cases}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Why ?

- \blacktriangleright Have population growth be part of model, not external parameter.
- \blacktriangleright Tractability.

Construction

- In The population size is a reflected random walk on \mathbb{Z}_+ (that is random walk minus its running minimum).
- \triangleright When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- \triangleright When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?

More precisely, letting $\hat{F}_n(f)$ denote the empirical fitness distribution

$$
\hat{F}_n(f) = \begin{cases} \text{prop. with fitness } \leq f & \text{if pop. size is } > 0 \\ \text{CDF of } \delta_0 & \text{otherwise.} \end{cases}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Why ?

- \blacktriangleright Have population growth be part of model, not external parameter.
- \blacktriangleright Tractability.

Construction

- In The population size is a reflected random walk on \mathbb{Z}_+ (that is random walk minus its running minimum).
- \triangleright When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- \triangleright When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?

More precisely, letting $\hat{F}_n(f)$ denote the empirical fitness distribution

$$
\hat{F}_n(f) = \begin{cases} \text{prop. with fitness } \leq f & \text{if pop. size is } > 0 \\ \text{CDF of } \delta_0 & \text{otherwise.} \end{cases}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Notation.

- \blacktriangleright $I \stackrel{\text{dist}}{=}$ Incement of random walk.
- $I = I_+ I_-$ where, I_+ = max(1,0) is the positive increment; and $I = max(-1, 0)$ the nagative increment.

Assumptions.

- \blacktriangleright $E|1| < \infty$.
- \triangleright Transience: $EI_{+} > EI_{-}$.

Let $f_c = EI_{-}/EI_{+} \in [0,1)$. Then

 $\hat{F}_n \to F_{\infty} := CDF$ of $U[f_c, 1]$, uniformly, a.s.

KORK STRAIN A BAR SHOP

Notation.

 $I = I_+ - I_-$ where, I_+ = max(1,0) is the positive increment; and $I = max(-I, 0)$ the nagative increment.

Assumptions.

- \blacktriangleright $E|1| < \infty$.
- \triangleright Transience: $EI_{+} > EI_{-}$.

Let $f_c = EI_{-}/EI_{+} \in [0,1)$. Then

 $\hat{F}_n \to F_\infty := CDF$ of $U[f_c, 1]$, uniformly, a.s.

KORK STRAIN A BAR SHOP

Notation.

- If $I =$ Incement of random walk.
- $I = I_+ I_-$ where, I_+ = max(1,0) is the positive increment; and $I = max(-1, 0)$ the nagative increment.

Assumptions.

- \blacktriangleright $E|1| < \infty$.
- \triangleright Transience: $EI_{+} > EI_{-}$.

Theorem 5 (GMS, Volkov-Skevi, B.) Let $f_c = EI_{-}/EI_{+} \in [0,1)$. Then

 $\hat{F}_n \to F_\infty := CDF$ of $U[f_c, 1]$, uniformly, a.s.

KORK STRAIN A BAR SHOP

Notation.

- If $I =$ Incement of random walk.
- $I = I_+ I_-$ where, I_+ = max(1,0) is the positive increment; and $I = max(-1, 0)$ the nagative increment.

Assumptions.

- \blacktriangleright $E|1| < \infty$.
- \triangleright Transience: $EI_{+} > EI_{-}$.

Theorem 5 (GMS, Volkov-Skevi, B.) Let $f_c = EI_{-}/EI_{+} \in [0,1)$. Then

 $\hat{F}_n \to F_\infty := CDF$ of $U[f_c, 1]$, uniformly, a.s.

KORK STRAIN A BAR SHOP

Notation.

- If $I =$ Incement of random walk.
- $I = I_+ I_-$ where, I_+ = max(1,0) is the positive increment; and $I = max(-1, 0)$ the nagative increment.

Assumptions.

- \blacktriangleright $E|I| < \infty$.
- \triangleright Transience: $EI_{+} > EI_{-}$.

Let $f_c = EI_{-}/EI_{+} \in [0,1)$. Then

 $\hat{F}_n \to F_\infty := CDF$ of $U[f_c, 1]$, uniformly, a.s.

KORK STRAIN A BAR SHOP

Notation.

- If $I =$ Incement of random walk.
- $I = I_+ I_-$ where, I_+ = max(1,0) is the positive increment; and $I = max(-1, 0)$ the nagative increment.

Assumptions.

- \blacktriangleright $E|I| < \infty$.
- \triangleright Transience: $EI_{+} > EI_{-}$.

Let $f_c = EI_{-}/EI_{+} \in [0,1)$. Then $\hat{F}_n \to F_\infty := CDF$ of $U[f_c, 1]$, uniformly, a.s.

If *I* is deterministic (that is population grows deterministically), this is Glivenko-Cantelli.

KORKA SERKER ORA

Notation.

- If $I =$ Incement of random walk.
- $I = I_+ I_-$ where, I_+ = max(1,0) is the positive increment; and $I = max(-1, 0)$ the nagative increment.

Assumptions.

- \blacktriangleright $E|I| < \infty$.
- \triangleright Transience: $EI_{+} > EI_{-}$.

Theorem 5 (GMS, Volkov-Skevi, B.) Let $f_c = EI_{-}/EI_{+} \in [0,1)$. Then

$$
\hat{F}_n \to F_\infty := \text{CDF of } U[f_c, 1], \text{ uniformly, a.s.}
$$

KORKA SERKER ORA

Notation.

- If $I =$ Incement of random walk.
- $I = I_+ I_-$ where, I_+ = max(1,0) is the positive increment; and $I_-=max(-I, 0)$ the nagative increment.

Assumptions.

- \blacktriangleright $E|I| < \infty$.
- \triangleright Transience: $EI_{+} > EI_{-}$.

Theorem 5 (GMS, Volkov-Skevi, B.) Let $f_c = EI_{-}/EI_{+} \in [0,1)$. Then $\hat{F}_n \to F_\infty := CDF$ of $U[f_c, 1]$, uniformly, a.s.

If I is deterministic (that is population grows deterministically), this is Glivenko-Cantelli.

KORKA SERKER ORA

- \triangleright Size of population with fitness $\leq f$ is reflected random walk with drift $fE1_+ - EI_-.$
	-
	-
	-
- If $f > f_c$, there exists finite time after which there will always be a species with
- **IDED** Therefore, the proportion of species with fitness $>$ f_c which will be eliminated tends to 0.

- ► Size of population with fitness $\leq f$ is reflected random walk with drift $fEl_+ - El_-.$
	- \blacktriangleright Transient if $f > f_c$
	- \triangleright Null recurrent if $f = f_c$
	- \triangleright Positive recurrent if $f < f_c$
- If $f > f_c$, there exists finite time after which there will always be a species with
- **IDED** Therefore, the proportion of species with fitness $>$ f_c which will be eliminated tends to 0.

- ► Size of population with fitness $\leq f$ is reflected random walk with drift $fEl_+ - El_-.$
	- \blacktriangleright Transient if $f > f_c$
	- \triangleright Null recurrent if $f = f_c$
	- \triangleright Positive recurrent if $f < f_c$
- If $f > f_c$, there exists finite time after which there will always be a species with
- **IDED** Therefore, the proportion of species with fitness $>$ f_c which will be eliminated tends to 0.

- ► Size of population with fitness $\leq f$ is reflected random walk with drift $fEl_+ - El_-.$
	- **F** Transient if $f > f_c$
	- \triangleright Null recurrent if $f = f_c$
	- \triangleright Positive recurrent if $f < f_c$
- If $f > f_c$, there exists finite time after which there will always be a species with
- **IDED** Therefore, the proportion of species with fitness $>$ f_c which will be eliminated tends to 0.

- ► Size of population with fitness $\leq f$ is reflected random walk with drift $fEl_+ - El_-.$
	- **F** Transient if $f > f_c$
	- \blacktriangleright Null recurrent if $f = f_c$
	- \triangleright Positive recurrent if $f < f_c$
- If $f > f_c$, there exists finite time after which there will always be a species with
- **IDED** Therefore, the proportion of species with fitness $>$ f_c which will be eliminated tends to 0.

- ► Size of population with fitness $\leq f$ is reflected random walk with drift $fEl_+ - El_-.$
	- **F** Transient if $f > f_c$
	- \blacktriangleright Null recurrent if $f = f_c$
	- \blacktriangleright Positive recurrent if $f < f_c$
- If $f > f_c$, there exists finite time after which there will always be a species with
- **IDED** Therefore, the proportion of species with fitness $>$ f_c which will be eliminated tends to 0.

- ► Size of population with fitness $\leq f$ is reflected random walk with drift $fEl_+ - El_-.$
	- **F** Transient if $f > f_c$
	- \blacktriangleright Null recurrent if $f = f_c$
	- \blacktriangleright Positive recurrent if $f < f_c$
- If $f > f_c$, there exists finite time after which there will always be a species with lower fitness.
- **IDED** Therefore, the proportion of species with fitness $>$ f_c which will be eliminated tends to 0.

Idea of Proof

- ► Size of population with fitness $\leq f$ is reflected random walk with drift $fEl_+ - El_-.$
	- **F** Transient if $f > f_c$
	- \blacktriangleright Null recurrent if $f = f_c$
	- \blacktriangleright Positive recurrent if $f < f_c$
- If $f > f_c$, there exists finite time after which there will always be a species with lower fitness.
- Interefore, the proportion of species with fitness $> f_c$ which will be eliminated tends to 0.

 $\mathbf{A} \equiv \mathbf{A} + \math$

 Ω

Let

$$
\hat{\Delta}_n=\hat{F}_n-F_{\infty}.
$$

Then we know that $\hat{\Delta}_n$ converges to 0, uniformly, a.s.

Next, we look at fluctuations.

Assumption

$$
E(I^2)<\infty.
$$

Processes appearing in limit

 \triangleright W_1 standard BM, and the corresponding bridge Br₁:

$$
Br_1(f):=W_1(f)-fW_1(1).
$$

KORKA SERKER ORA

- If $f_c = 0$, choose $W_1 \equiv 0$.
- If $f_c > 0$: W_1 standard BM derived from W_1 as follows :
	- $U \sim U[f_c, 1]$, independent of W_1 .
	- An "interval" \widetilde{A}_t of length $(1 f_c)t$, shifted by U.

$$
\triangleright \widetilde{W}_1(t) := \frac{1}{\sqrt{f_c(1-f_c)}} \left((1-f_c) W_1(f_c t) + f_c \int 1_{\widetilde{A}_L}(s) dW_1(s) \right).
$$

Let

$$
\hat{\Delta}_n=\hat{F}_n-F_{\infty}.
$$

Then we know that $\hat{\Delta}_n$ converges to 0, uniformly, a.s.

Next, we look at fluctuations.

Assumption

$$
E(I^2)<\infty.
$$

Processes appearing in limit

 \triangleright W_1 standard BM, and the corresponding bridge Br₁:

$$
Br_1(f):=W_1(f)-fW_1(1).
$$

KORKA SERKER ORA

- If $f_c = 0$, choose $W_1 \equiv 0$.
- If $f_c > 0$: W_1 standard BM derived from W_1 as follows :
	- $U \sim U[f_c, 1]$, independent of W_1 .
	- An "interval" \widetilde{A}_t of length $(1 f_c)t$, shifted by U.

$$
\triangleright \widetilde{W}_1(t) := \frac{1}{\sqrt{f_c(1-f_c)}} \left((1-f_c) W_1(f_c t) + f_c \int 1_{\widetilde{A}_L}(s) dW_1(s) \right).
$$

Let

$$
\hat{\Delta}_n=\hat{F}_n-F_{\infty}.
$$

Then we know that $\hat{\Delta}_n$ converges to 0, uniformly, a.s.

Next, we look at fluctuations.

Assumption

$$
E(I^2)<\infty.
$$

Processes appearing in limit

 \triangleright W_1 standard BM, and the corresponding bridge Br₁:

$$
Br_1(f):=W_1(f)-fW_1(1).
$$

KORK STRAIN A BAR SHOP

- If $f_c = 0$, choose $W_1 \equiv 0$.
- If $f_c > 0$: W_1 standard BM derived from W_1 as follows :
	- $U \sim U[f_c, 1]$, independent of W_1 .
	- An "interval" \widetilde{A}_t of length $(1 f_c)t$, shifted by U.

$$
\begin{array}{ll}\n\blacktriangleright & \widetilde{W}_1(t):=\frac{1}{\sqrt{f_c(1-f_c)}}\left((1-f_c)W_1(f_c t)+f_c\int 1_{\widetilde{A}_\xi}(s)dW_1(s)\right).\n\end{array}
$$

Let

$$
\hat{\Delta}_n=\hat{F}_n-F_{\infty}.
$$

Then we know that $\hat{\Delta}_n$ converges to 0, uniformly, a.s.

Next, we look at fluctuations.

Assumption

$$
E(I^2)<\infty.
$$

Processes appearing in limit

 \triangleright W_1 standard BM, and the corresponding bridge Br₁:

$$
Br_1(f):=W_1(f)-fW_1(1).
$$

.

K □ ▶ K @ ▶ K 할 X K 할 X T 할 X 1 9 Q Q *

\n- ■ If
$$
f_c = 0
$$
, choose $\widetilde{W}_1 \equiv 0$.
\n- ■ If $f_c > 0$: \widetilde{W}_1 standard BM derived from W_1 as follows: ②
\n- ■ $U \sim U[f_c, 1]$, independent of W_1 .
\n- ■ An "interval" \widetilde{A}_t of length $(1 - f_c)t$, shifted by U .
\n- ■ $\widetilde{W}_1(t) := \frac{1}{\sqrt{f_c(1 - f_c)}} \left((1 - f_c)W_1(f_c t) + f_c \int \mathbf{1}_{\widetilde{A}_t}(s) dW_1(s) \right)$.
\n- ■ $\widetilde{W}_1(t) := \frac{1}{\sqrt{f_c(1 - f_c)}} \left(\frac{1 - f_c}{1 - f_c} \right) \left(\frac{1 - f_c}{1 - f_c} \right)$.
\n

GMS CLT

For a path $\omega \in D[0,1]$, let $\Psi(\omega) := \omega(1) - \inf_{0 \leq t \leq 1} \omega(t)$

Theorem 6 (B.)

$$
\sqrt{n}\begin{pmatrix}\n\widehat{\Delta}_{n}(\cdot)|_{(f_c,1]}\n\widehat{\Delta}_{n}(f_c)\n\end{pmatrix} \Rightarrow \frac{1}{EI_+}\begin{pmatrix}\n\widehat{\sigma}_1Br_1 + \sigma_2W_2(1)(1 - F_{\infty})\n\widehat{\Delta}_{n}(f_c)\n\end{pmatrix},
$$
\nwith $\sigma_1 = \sqrt{EI_+}$, $\widetilde{\sigma}_1 = \sqrt{f_c(1 - f_c)EI_+}$, $\sigma_2 = \sqrt{f_c^2E(I_+^2) + E(I_-^2)}$, and the convergence is $D(f_c, 1] \times \mathbb{R}$.

Marginals

$$
\sqrt{n}\widehat{\Delta}_n(f) \Rightarrow \begin{cases} \sigma(f \wedge 1)N(0,1) & f > f_c; \\ \sigma(f_c)|N(0,1)| & f = f_c; \\ 0 & f < f_c, \end{cases}
$$

where $\sigma(f) := \frac{1}{E(I_+)} \sqrt{f(1-f)E(I_+) + \left(\frac{1-f}{1-f_c}\right)^2 \left(f_c^2 E(I_+^2) + E(I_-^2)\right)}$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

GMS CLT

For a path $\omega \in D[0,1]$, let $\Psi(\omega) := \omega(1) - \inf_{0 \leq t \leq 1} \omega(t)$

Theorem 6 (B.)

$$
\sqrt{n}\left(\begin{array}{c}\widehat{\Delta}_{n}(\cdot)|_{(f_{c},1]}\\\widehat{\Delta}_{n}(f_{c})\end{array}\right) \Rightarrow \frac{1}{EI_{+}}\left(\begin{array}{c}\widehat{\sigma_{1}Br_{1}} + \sigma_{2}W_{2}(1)(1-F_{\infty})\\\widehat{\sigma_{1}W_{1}} + \sigma_{2}W_{2}\end{array}\right),
$$
\nwith $\sigma_{1} = \sqrt{EI_{+}}$, $\widetilde{\sigma}_{1} = \sqrt{f_{c}(1-f_{c})EI_{+}}$, $\sigma_{2} = \sqrt{f_{c}^{2}E(I_{+}^{2})+E(I_{-}^{2})}$, and the convergence is $D(f_{c},1] \times \mathbb{R}$.

Marginals

$$
\sqrt{n}\widehat{\Delta}_n(f) \Rightarrow \begin{cases} \sigma(f \wedge 1)N(0,1) & f > f_c; \\ \sigma(f_c)|N(0,1)| & f = f_c; \\ 0 & f < f_c, \end{cases}
$$

where $\sigma(f) := \frac{1}{E(I_+)} \sqrt{f(1-f)E(I_+) + \left(\frac{1-f}{1-f_c}\right)^2 \left(f_c^2 E(I_+^2) + E(I_-^2)\right)}$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

Recall

$$
\sqrt{n}\left(\begin{array}{c}\widehat{\Delta}_n(\cdot)|_{(f_c,1]}\\\widehat{\Delta}_n(f_c)\end{array}\right)\Rightarrow\frac{1}{EI_+}\left(\begin{array}{c}\sigma_1\mathbb{B}\mathbf{r}_1+\sigma_2\mathbb{W}_2(1)g\\\Psi(\overline{\sigma}_1\mathbb{W}_1+\sigma_2\mathbb{W}_2)\end{array}\right)
$$

Origin of terms

1. Bridge arising from empirical process associated with births. Only surviving term when $f_c = 0$, recovering classical CLT for empirical processes.

KORK STRAIN A BAR SHOP

- 2. Fluctuations from bridge due to randomness of births, and existence of deaths
- 3. Population with fitness $\leq f_c$ is null recurrent random walk above its running minimum, hence Ψ. minimum, hence Ψ.
Note that it's of order $\sqrt{n},$ hence only appearing in CLT.
	-
	- b. Fluctuations from randomness of births, and negative increments.

- In The limit process is not in $D[f_c, 1]$, because its distribution at f_c is $\sigma(f_c)|N(0,1)| > 0$ a.s., while its limit from the right is $\sigma(f_c)N(0,1)$.
- \triangleright The standard normal random variables above are NOT the same.

Recall

$$
\sqrt{n}\left(\begin{array}{c}\widehat{\Delta}_n(\cdot)|_{(f_c,1]}\\\widehat{\Delta}_n(f_c)\end{array}\right)\Rightarrow\frac{1}{EI_+}\left(\begin{array}{c}\sigma_1\text{Br}_1+\sigma_2\text{W}_2(1)_{\text{g}}\\\Psi(\text{F}_1\text{W}_1+\sigma_2\text{W}_2)\end{array}\right)
$$

Origin of terms

1. Bridge arising from empirical process associated with births. Only surviving term when $f_c = 0$, recovering classical CLT for empirical processes.

KORKA SERKER ORA

- 2. Fluctuations from bridge due to randomness of births, and existence of deaths
- 3. Population with fitness $\leq f_c$ is null recurrent random walk above its running minimum, hence Ψ. minimum, hence Ψ.
Note that it's of order $\sqrt{n},$ hence only appearing in CLT.
	-
	- b. Fluctuations from randomness of births, and negative increments.

- \triangleright The limit process is not in $D[f_c, 1]$, because its distribution at f_c is $\sigma(f_c)|N(0,1)| > 0$ a.s., while its limit from the right is $\sigma(f_c)N(0,1)$.
- \triangleright The standard normal random variables above are NOT the same.

Recall

$$
\sqrt{n}\left(\begin{array}{c}\widehat{\Delta}_n(\cdot)|_{(f_c,1]}\\\widehat{\Delta}_n(f_c)\end{array}\right)\Rightarrow\frac{1}{EI_+}\left(\begin{array}{c}\sigma_1\mathsf{Br}_1+\sigma_2\mathsf{W}_2(1)g\\ \psi(\sigma_1\mathsf{W}_1+\sigma_2\mathsf{W}_2)\end{array}\right)
$$

Origin of terms

1. Bridge arising from empirical process associated with births. Only surviving term when $f_c = 0$, recovering classical CLT for empirical processes.

KORKA SERKER ORA

- 2. Fluctuations from bridge due to randomness of births, and existence of deaths
- 3. Population with fitness $\leq f_c$ is null recurrent random walk above its running minimum, hence Ψ. minimum, hence Ψ.
Note that it's of order $\sqrt{n},$ hence only appearing in CLT.
	-
	- b. Fluctuations from randomness of births, and negative increments.

- The limit process is not in $D[f_c, 1]$, because its distribution at f_c is $\sigma(f_c)|N(0,1)| > 0$ a.s., while its limit from the right is $\sigma(f_c)N(0,1)$.
- \triangleright The standard normal random variables above are NOT the same.

Recall

$$
\sqrt{n}\left(\begin{array}{c}\widehat{\Delta}_n(\cdot)|_{(f_c,1] }\\ \widehat{\Delta}_n(f_c)\end{array}\right)\Rightarrow \frac{1}{EI_+}\left(\begin{array}{c}\sigma_1\mathsf{Br}_1+\sigma_2\mathsf{W}_2(1)g \\ \Psi(\widetilde{\sigma}_1\mathsf{W}_1+\sigma_2\mathsf{W}_2)\end{array}\right)
$$

Origin of terms

1. Bridge arising from empirical process associated with births. Only surviving term when $f_c = 0$, recovering classical CLT for empirical processes.

KORKA SERKER ORA

- 2. Fluctuations from bridge due to randomness of births, and existence of deaths
- 3. Population with fitness $\leq f_c$ is null recurrent random walk above its running minimum, hence Ψ. minimum, hence Ψ.
Note that it's of order $\sqrt n,$ hence only appearing in CLT.
	-
	- b. Fluctuations from randomness of births, and negative increments.

- The limit process is not in $D[f_c, 1]$, because its distribution at f_c is $\sigma(f_c)|N(0,1)| > 0$ a.s., while its limit from the right is $\sigma(f_c)N(0,1)$.
- \triangleright The standard normal random variables above are NOT the same.

Recall

$$
\sqrt{n}\left(\begin{array}{c}\widehat{\Delta}_n(\cdot)|_{(f_c,1]}\\\widehat{\Delta}_n(f_c)\end{array}\right)\Rightarrow\frac{1}{EI_+}\left(\begin{array}{c}\sigma_1\text{Br}_1+\sigma_2\text{W}_2(1)g\\ \Psi(\widetilde{\sigma}_1\widetilde{\text{W}}_1+\sigma_2\text{W}_2)\end{array}\right)
$$

Origin of terms

1. Bridge arising from empirical process associated with births. Only surviving term when $f_c = 0$, recovering classical CLT for empirical processes.

KORK ERKER ADE YOUR

- 2. Fluctuations from bridge due to randomness of births, and existence of deaths
- 3. Population with fitness $\leq f_c$ is null recurrent random walk above its running minimum, hence Ψ. minimum, hence Ψ.
Note that it's of order $\sqrt n,$ hence only appearing in CLT.
	- a. Scaling limit for the births.
	- b. Fluctuations from randomness of births, and negative increments.

- The limit process is not in $D[f_c, 1]$, because its distribution at f_c is $\sigma(f_c)|N(0,1)| > 0$ a.s., while its limit from the right is $\sigma(f_c)N(0,1)$.
- \triangleright The standard normal random variables above are NOT the same.

Recall

$$
\sqrt{n}\left(\begin{array}{c}\widehat{\Delta}_n(\cdot)|_{(f_c,1]}\\\widehat{\Delta}_n(f_c)\end{array}\right)\Rightarrow\frac{1}{EI_+}\left(\begin{array}{c}\sigma_1\text{Br}_1+\sigma_2\text{W}_2(1)g\\ \Psi(\widetilde{\sigma}_1\widetilde{\text{W}}_1+\sigma_2\text{W}_2)\end{array}\right)
$$

Origin of terms

1. Bridge arising from empirical process associated with births. Only surviving term when $f_c = 0$, recovering classical CLT for empirical processes.

KORK ERKER ADE YOUR

- 2. Fluctuations from bridge due to randomness of births, and existence of deaths
- 3. Population with fitness $\leq f_c$ is null recurrent random walk above its running minimum, hence Ψ. minimum, hence Ψ.
Note that it's of order $\sqrt n,$ hence only appearing in CLT.

- a. Scaling limit for the births.
- b. Fluctuations from randomness of births, and negative increments.

- The limit process is not in $D[f_c, 1]$, because its distribution at f_c is $\sigma(f_c)|N(0,1)| > 0$ a.s., while its limit from the right is $\sigma(f_c)N(0,1)$.
- \triangleright The standard normal random variables above are NOT the same.

Recall

$$
\sqrt{n}\left(\begin{array}{c}\widehat{\Delta}_n(\cdot)|_{(f_c,1]}\\\widehat{\Delta}_n(f_c)\end{array}\right)\Rightarrow\frac{1}{EI_+}\left(\begin{array}{c}\sigma_1\text{Br}_1+\sigma_2\text{W}_2(1)g\\ \Psi(\widetilde{\sigma}_1\widetilde{\text{W}}_1+\sigma_2\text{W}_2)\end{array}\right)
$$

Origin of terms

1. Bridge arising from empirical process associated with births. Only surviving term when $f_c = 0$, recovering classical CLT for empirical processes.

KORK ERKER ADE YOUR

- 2. Fluctuations from bridge due to randomness of births, and existence of deaths
- 3. Population with fitness $\leq f_c$ is null recurrent random walk above its running minimum, hence Ψ. minimum, hence Ψ.
Note that it's of order $\sqrt n,$ hence only appearing in CLT.
	- a. Scaling limit for the births.
	- b. Fluctuations from randomness of births, and negative increments.

- \triangleright The limit process is not in $D[f_c, 1]$, because its distribution at f_c is $\sigma(f_c)|N(0,1)| > 0$ a.s., while its limit from the right is $\sigma(f_c)N(0,1)$.
- \triangleright The standard normal random variables above are NOT the same.

Recall

$$
\sqrt{n}\left(\begin{array}{c}\widehat{\Delta}_n(\cdot)|_{(f_c,1]}\\\widehat{\Delta}_n(f_c)\end{array}\right)\Rightarrow\frac{1}{EI_+}\left(\begin{array}{c}\sigma_1\text{Br}_1+\sigma_2\text{W}_2(1)g\\ \Psi(\widetilde{\sigma}_1\widetilde{\text{W}}_1+\sigma_2\text{W}_2)\end{array}\right)
$$

Origin of terms

1. Bridge arising from empirical process associated with births. Only surviving term when $f_c = 0$, recovering classical CLT for empirical processes.

KORK ERKER ADE YOUR

- 2. Fluctuations from bridge due to randomness of births, and existence of deaths
- 3. Population with fitness $\leq f_c$ is null recurrent random walk above its running minimum, hence Ψ. minimum, hence Ψ.
Note that it's of order $\sqrt n,$ hence only appearing in CLT.
	- a. Scaling limit for the births.
	- b. Fluctuations from randomness of births, and negative increments.

- \blacktriangleright The limit process is not in $D[f_c, 1]$, because its distribution at f_c is $\sigma(f_c)|N(0,1)| > 0$ a.s., while its limit from the right is $\sigma(f_c)N(0,1)$.
- \triangleright The standard normal random variables above are NOT the same.
GMS CLT Discussion

Recall

$$
\sqrt{n}\left(\begin{array}{c}\widehat{\Delta}_n(\cdot)|_{(f_c,1]}\\\widehat{\Delta}_n(f_c)\end{array}\right)\Rightarrow\frac{1}{EI_+}\left(\begin{array}{c}\sigma_1\text{Br}_1+\sigma_2\text{W}_2(1)g\\ \Psi(\widetilde{\sigma}_1\widetilde{\text{W}}_1+\sigma_2\text{W}_2)\end{array}\right)
$$

Origin of terms

1. Bridge arising from empirical process associated with births. Only surviving term when $f_c = 0$, recovering classical CLT for empirical processes.

KORKA SERKER ORA

- 2. Fluctuations from bridge due to randomness of births, and existence of deaths
- 3. Population with fitness $\leq f_c$ is null recurrent random walk above its running minimum, hence Ψ. minimum, hence Ψ.
Note that it's of order $\sqrt n,$ hence only appearing in CLT.

- a. Scaling limit for the births.
- b. Fluctuations from randomness of births, and negative increments.

Discontinuity

- \blacktriangleright The limit process is not in $D[f_c, 1]$, because its distribution at f_c is $\sigma(f_c)|N(0,1)| > 0$ a.s., while its limit from the right is $\sigma(f_c)N(0,1)$.
- \triangleright The standard normal random variables above are NOT the same.

Assume

 $P(I = 1) = p = 1 - P(I = -1).$

New feature

- \triangleright At birth the individual obtains
	-
	-
- \triangleright At death, eliminate all species with lowest fitness.

We refer to the population with fixed fitness as a site.

Observation

- \triangleright Probability of new site is pr.
- \triangleright Probability of eliminating a site is $1 p$.

Conclusion

- 1. Number of sites coincides with GMS with $P(1 = 1) = pr$, $P(1 = -1) = 1 - p$ and $P(1 = 0) = 1 - pr - (1 - p)$.
- 2. The system is transient if and only if $pr > (1 p)$.
- 3. In this case $f_c = \frac{1-p}{\rho r}$, and the asymptotic site fitness distribution is U[f_c , 1].

KOD KAR KED KED E YORA

Assume

$$
P(I = 1) = p = 1 - P(I = -1).
$$

New feature

- \triangleright At birth the individual obtains
	-
	-
- \triangleright At death, eliminate all species with lowest fitness.

We refer to the population with fixed fitness as a site.

Observation

- \triangleright Probability of new site is pr.
- ▶ Probability of eliminating a site is $1 p$.

Conclusion

- 1. Number of sites coincides with GMS with $P(1 = 1) = pr$, $P(1 = -1) = 1 - p$ and $P(1 = 0) = 1 - pr - (1 - p)$.
- 2. The system is transient if and only if $pr > (1 p)$.
- 3. In this case $f_c = \frac{1-p}{\rho r}$, and the asymptotic site fitness distribution is U[f_c , 1].

Assume

$$
P(l = 1) = p = 1 - P(l = -1).
$$

New feature

- \triangleright At birth the individual obtains
	- \blacktriangleright w/prob r new U[0, 1] fitness.
	- \triangleright w/prob 1 − r, an existing fitness, uniformly among existing fitnesses, or new one if
- \triangleright At death, eliminate all species with lowest fitness.

We refer to the population with fixed fitness as a site.

Observation

- \triangleright Probability of new site is pr.
- \triangleright Probability of eliminating a site is $1 p$.

Conclusion

- 1. Number of sites coincides with GMS with $P(1 = 1) = pr$, $P(1 = -1) = 1 - p$ and $P(1 = 0) = 1 - pr - (1 - p)$.
- 2. The system is transient if and only if $pr > (1 p)$.
- 3. In this case $f_c = \frac{1-p}{\rho r}$, and the asymptotic site fitness distribution is U[f_c , 1].

KORK STRAIN A BAR SHOP

Assume

$$
P(l = 1) = p = 1 - P(l = -1).
$$

New feature

- \triangleright At birth the individual obtains
	- \blacktriangleright w/prob r new U[0, 1] fitness.
	- \triangleright w/prob 1 − r, an existing fitness, uniformly among existing fitnesses, or new one if
- \triangleright At death, eliminate all species with lowest fitness.

We refer to the population with fixed fitness as a site.

Observation

- \triangleright Probability of new site is pr.
- \triangleright Probability of eliminating a site is $1 p$.

Conclusion

- 1. Number of sites coincides with GMS with $P(1 = 1) = pr$, $P(1 = -1) = 1 - p$ and $P(1 = 0) = 1 - pr - (1 - p)$.
- 2. The system is transient if and only if $pr > (1 p)$.
- 3. In this case $f_c = \frac{1-p}{\rho r}$, and the asymptotic site fitness distribution is U[f_c , 1].

KORK STRAIN A BAR SHOP

Assume

$$
P(l = 1) = p = 1 - P(l = -1).
$$

New feature

- \triangleright At birth the individual obtains
	- \blacktriangleright w/prob r new U[0, 1] fitness.
	- ► w/prob $1 r$, an existing fitness, uniformly among existing fitnesses, or new one if population is zero.
- \triangleright At death, eliminate all species with lowest fitness.

We refer to the population with fixed fitness as a site.

Observation

- \triangleright Probability of new site is pr.
- \triangleright Probability of eliminating a site is $1 p$.

Conclusion

- 1. Number of sites coincides with GMS with $P(1 = 1) = pr$, $P(1 = -1) = 1 - p$ and $P(1 = 0) = 1 - pr - (1 - p)$.
- 2. The system is transient if and only if $pr > (1 p)$.
- 3. In this case $f_c = \frac{1-p}{\rho r}$, and the asymptotic site fitness distribution is U[f_c , 1].

KORK STRAIN A BAR SHOP

Assume

$$
P(I=1) = p = 1 - P(I=-1).
$$

New feature

- \triangleright At birth the individual obtains
	- \blacktriangleright w/prob r new U[0, 1] fitness.
	- ► w/prob $1 r$, an existing fitness, uniformly among existing fitnesses, or new one if population is zero.
- \triangleright At death, eliminate all species with lowest fitness.

We refer to the population with fixed fitness as a site.

Observation

- \blacktriangleright Probability of new site is pr.
- \triangleright Probability of eliminating a site is $1 p$.

Conclusion

- 1. Number of sites coincides with GMS with $P(1 = 1) = pr$, $P(1 = -1) = 1 - p$ and $P(1 = 0) = 1 - pr - (1 - p)$.
- 2. The system is transient if and only if $pr > (1 p)$.
- 3. In this case $f_c = \frac{1-p}{\rho r}$, and the asymptotic site fitness distribution is U[f_c , 1].

Assume

$$
P(I=1) = p = 1 - P(I=-1).
$$

New feature

- \triangleright At birth the individual obtains
	- \blacktriangleright w/prob r new U[0, 1] fitness.
	- ► w/prob $1 r$, an existing fitness, uniformly among existing fitnesses, or new one if population is zero.
- \triangleright At death, eliminate all species with lowest fitness.

We refer to the population with fixed fitness as a site.

Observation

- \blacktriangleright Probability of new site is pr.
- ► Probability of eliminating a site is $1 p$.

Conclusion

- 1. Number of sites coincides with GMS with $P(1 = 1) = pr$, $P(1 = -1) = 1 - p$ and $P(1 = 0) = 1 - pr - (1 - p)$.
- 2. The system is transient if and only if $pr > (1 p)$.
- 3. In this case $f_c = \frac{1-p}{\rho r}$, and the asymptotic site fitness distribution is U[f_c , 1].

Assume

$$
P(I=1) = p = 1 - P(I=-1).
$$

New feature

- \triangleright At birth the individual obtains
	- \blacktriangleright w/prob r new U[0, 1] fitness.
	- ► w/prob $1 r$, an existing fitness, uniformly among existing fitnesses, or new one if population is zero.
- \triangleright At death, eliminate all species with lowest fitness.

We refer to the population with fixed fitness as a site.

Observation

- \blacktriangleright Probability of new site is pr.
- ► Probability of eliminating a site is $1 p$.

Conclusion

- 1. Number of sites coincides with GMS with $P(1 = 1) = pr$, $P(1 = -1) = 1 - p$ and $P(1 = 0) = 1 - pr - (1 - p)$.
- 2. The system is transient if and only if $pr > (1 p)$.
- 3. In this case $f_c = \frac{1-p}{\rho r}$, and the asymptotic site fitness distribution is U[f_c , 1].

What is site size distribution ?

Let \hat{H}_n denote the empirical distribution of sites and their respective fitness: $\hat{H}_n(A \times B) = \frac{\text{\# sites whose size is in } A \text{ and whose fitness is in } B}{\text{\# sites}}.$ $#$ sites

Theorem 7 (Schinazi-B. '15)

$$
\hat{H}_n \to \text{Geom}\left(\frac{pr-(1-p)}{p-(1-p)}\right) \otimes U[f_c,1], \text{ a.s.}
$$

Figure: Empirical dist of site sizes ($p = 0.8, r = 0.4, n = 10^6$) and corresponding Geom. **KORK STRAIN A BAR SHOP**

Why Geometric ?

Fix site size $k > 1$. Consider number of sites of size k with fitness $> f_c$.

Assume the proportion of such sites converges to $H_{\infty}(k)$.

 \blacktriangleright Number of such sites grows at speed

 $p(1 - r)(H_{\infty}(k - 1) - H_{\infty}(k)) + o(1) = H_{\infty}(k) * (pr - (1 - p))$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Then change in the number of sites of size k occurs only at

 \triangleright At birth

-
-
- \triangleright At death, but occurs only finitely often.
- ► Equality because # sites grows at speed $pr (1 p)$.

This equation guarantees geometric decay.

The problem

- Easy calculus exercise if $pr > \frac{1}{2}$.
- ▶ Otherwise: use "mean reversion" away from linear curve.

Why Geometric ?

Fix site size $k > 1$. Consider number of sites of size k with fitness $> f_c$.

Assume the proportion of such sites converges to $H_{\infty}(k)$.

 \blacktriangleright Number of such sites grows at speed

 $p(1 - r)(H_{\infty}(k - 1) - H_{\infty}(k)) + o(1) = H_{\infty}(k) * (pr - (1 - p))$

KORKA SERKER ORA

Then change in the number of sites of size k occurs only at

 \triangleright At birth

- Increases by 1 when new individual selects a site of size $k 1$.
- \triangleright Decreases by 1 when new individual selects a site of size k .
- \triangleright At death, but occurs only finitely often.
- ► Equality because # sites grows at speed $pr (1 p)$.

This equation guarantees geometric decay.

The problem

- Easy calculus exercise if $pr > \frac{1}{2}$.
- ▶ Otherwise: use "mean reversion" away from linear curve.

Why Geometric ?

Fix site size $k > 1$. Consider number of sites of size k with fitness $> f_c$.

Assume the proportion of such sites converges to $H_{\infty}(k)$.

 \blacktriangleright Number of such sites grows at speed

 $p(1 - r)(H_{\infty}(k - 1) - H_{\infty}(k)) + o(1) = H_{\infty}(k) * (pr - (1 - p))$

KORKA SERKER ORA

Then change in the number of sites of size k occurs only at

- \triangleright At birth
	- Increases by 1 when new individual selects a site of size $k 1$.
	- \triangleright Decreases by 1 when new individual selects a site of size k .
- \triangleright At death, but occurs only finitely often.
- ► Equality because # sites grows at speed $pr (1 p)$.

This equation guarantees geometric decay.

The problem

- Easy calculus exercise if $pr > \frac{1}{2}$.
- ▶ Otherwise: use "mean reversion" away from linear curve.

Why Geometric ?

Fix site size $k > 1$. Consider number of sites of size k with fitness $> f_c$.

Assume the proportion of such sites converges to $H_{\infty}(k)$.

 \blacktriangleright Number of such sites grows at speed

 $p(1 - r)(H_{\infty}(k - 1) - H_{\infty}(k)) + o(1) = H_{\infty}(k) * (pr - (1 - p))$

KORKA SERKER ORA

Then change in the number of sites of size k occurs only at

- \triangleright At birth
	- Increases by 1 when new individual selects a site of size $k 1$.
	- \triangleright Decreases by 1 when new individual selects a site of size k .
- \triangleright At death, but occurs only finitely often.
- ► Equality because # sites grows at speed $pr (1 p)$.

This equation guarantees geometric decay.

The problem

- Easy calculus exercise if $pr > \frac{1}{2}$.
- ▶ Otherwise: use "mean reversion" away from linear curve.

Why Geometric ?

Fix site size $k > 1$. Consider number of sites of size k with fitness $> f_c$.

Assume the proportion of such sites converges to $H_{\infty}(k)$.

 \triangleright Number of such sites grows at speed

 $p(1 - r)(H_{\infty}(k - 1) - H_{\infty}(k)) + o(1) = H_{\infty}(k) * (pr - (1 - p))$

KORKA SERKER ORA

Then change in the number of sites of size k occurs only at

- \triangleright At birth
	- Increases by 1 when new individual selects a site of size $k 1$.
	- \triangleright Decreases by 1 when new individual selects a site of size k.
- \triangleright At death, but occurs only finitely often.

► Equality because # sites grows at speed $pr - (1 - p)$.

This equation guarantees geometric decay.

The problem

- Easy calculus exercise if $pr > \frac{1}{2}$.
- ▶ Otherwise: use "mean reversion" away from linear curve.

Why Geometric ?

Fix site size $k > 1$. Consider number of sites of size k with fitness $> f_c$.

Assume the proportion of such sites converges to $H_{\infty}(k)$.

 \blacktriangleright Number of such sites grows at speed

$$
p(1 - r)(H_{\infty}(k - 1) - H_{\infty}(k)) + o(1) = H_{\infty}(k) * (pr - (1 - p))
$$

KORKA SERKER ORA

Then change in the number of sites of size k occurs only at

- \triangleright At birth
	- Increases by 1 when new individual selects a site of size $k 1$.
	- \triangleright Decreases by 1 when new individual selects a site of size k.
- \triangleright At death, but occurs only finitely often.
- ► Equality because $#$ sites grows at speed $pr (1 p)$.

This equation guarantees geometric decay.

The problem

- Easy calculus exercise if $pr > \frac{1}{2}$.
- ▶ Otherwise: use "mean reversion" away from linear curve.

Why Geometric ?

Fix site size $k > 1$. Consider number of sites of size k with fitness $> f_c$.

Assume the proportion of such sites converges to $H_{\infty}(k)$.

 \triangleright Number of such sites grows at speed

 $p(1 - r)(H_{\infty}(k-1) - H_{\infty}(k)) + o(1) = H_{\infty}(k) * (pr - (1 - p))$

KORKAR KERKER EL VOLO

Then change in the number of sites of size k occurs only at

- \triangleright At birth
	- Increases by 1 when new individual selects a site of size $k 1$.
	- \triangleright Decreases by 1 when new individual selects a site of size k .
- \triangleright At death, but occurs only finitely often.
- ► Equality because $#$ sites grows at speed $pr (1 p)$.

This equation guarantees geometric decay.

The problem

- Easy calculus exercise if $pr > \frac{1}{2}$.
- ▶ Otherwise: use "mean reversion" away from linear curve.

Why Geometric ?

Fix site size $k > 1$. Consider number of sites of size k with fitness $> f_c$.

Assume the proportion of such sites converges to $H_{\infty}(k)$.

 \triangleright Number of such sites grows at speed

$$
p(1 - r)(H_{\infty}(k - 1) - H_{\infty}(k)) + o(1) = H_{\infty}(k) * (pr - (1 - p))
$$

KORKAR KERKER EL VOLO

Then change in the number of sites of size k occurs only at

- \triangleright At birth
	- Increases by 1 when new individual selects a site of size $k 1$.
	- \triangleright Decreases by 1 when new individual selects a site of size k.
- \triangleright At death, but occurs only finitely often.
- ► Equality because $#$ sites grows at speed $pr (1 p)$.

This equation guarantees geometric decay.

The problem

- Easy calculus exercise if $pr > \frac{1}{2}$.
- ▶ Otherwise: use "mean reversion" away from linear curve.

Why Geometric ?

Fix site size $k > 1$. Consider number of sites of size k with fitness $> f_c$.

Assume the proportion of such sites converges to $H_{\infty}(k)$.

 \triangleright Number of such sites grows at speed

$$
p(1-r)(H_{\infty}(k-1)-H_{\infty}(k)) + o(1) = H_{\infty}(k) * (pr - (1-p))
$$

KORK ERKER ADE YOUR

Then change in the number of sites of size k occurs only at

- \triangleright At birth
	- Increases by 1 when new individual selects a site of size $k 1$.
	- \triangleright Decreases by 1 when new individual selects a site of size k.
- \triangleright At death, but occurs only finitely often.
- ► Equality because $#$ sites grows at speed $pr (1 p)$.

This equation guarantees geometric decay.

The problem

- Easy calculus exercise if $pr > \frac{1}{2}$.
- ▶ Otherwise: use "mean reversion" away from linear curve.

Why Geometric ?

Fix site size $k > 1$. Consider number of sites of size k with fitness $> f_c$.

Assume the proportion of such sites converges to $H_{\infty}(k)$.

 \triangleright Number of such sites grows at speed

$$
p(1-r)(H_{\infty}(k-1)-H_{\infty}(k)) + o(1) = H_{\infty}(k) * (pr - (1-p))
$$

KORK ERKER ADE YOUR

Then change in the number of sites of size k occurs only at

- \triangleright At birth
	- Increases by 1 when new individual selects a site of size $k 1$.
	- \triangleright Decreases by 1 when new individual selects a site of size k.
- \triangleright At death, but occurs only finitely often.
- ► Equality because $#$ sites grows at speed $pr (1 p)$.

This equation guarantees geometric decay.

The problem

- Easy calculus exercise if $pr > \frac{1}{2}$.
- ▶ Otherwise: use "mean reversion" away from linear curve.

Why Geometric ?

Fix site size $k > 1$. Consider number of sites of size k with fitness $> f_c$.

Assume the proportion of such sites converges to $H_{\infty}(k)$.

 \triangleright Number of such sites grows at speed

$$
p(1-r)(H_{\infty}(k-1)-H_{\infty}(k)) + o(1) = H_{\infty}(k) * (pr - (1-p))
$$

Then change in the number of sites of size k occurs only at

- \triangleright At birth
	- Increases by 1 when new individual selects a site of size $k 1$.
	- \triangleright Decreases by 1 when new individual selects a site of size k.
- \triangleright At death, but occurs only finitely often.
- ► Equality because $#$ sites grows at speed $pr (1 p)$.

This equation guarantees geometric decay.

The problem

- Easy calculus exercise if $pr > \frac{1}{2}$.
- \triangleright Otherwise: use "mean reversion" away from linear curve.

 $T_{h_1,h}$ y^{ou}.

Ad: Markov chains REU at UConn this summer. Details on our [mathprograms.org](https://www.mathprograms.org/db/programs/652) page or on markov-chains-reu.math.uconn.edu