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Introduction

Toy models for time evolution of a system consisting of a population of “species”.

Common features

I Population is asymptotically large.
I Fitness-based models:

I “At birth” each species is assigned a random “fitness” independent of past.
I Time evolution eliminates species with lowest fitness from the system.

What is the asymptotic fitness distribution ?

The Models

I Bak-Sneppen model (‘93)

I A model presented by Guiol Machado and Schinazi (‘11)

I Variations of the above.
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Bak Sneppen



Bak Sneppen

One of the first models claimed through numerical simulations to exhibit
self-organized criticality.

A discrete time ergodic Markov processes with

I N species arranged on the vertices of a cycle (or any finite connected graph).

I Each is a assigned an initial fitness, IID U[0, 1].

I Evolution: at each time, the species with lowest fitness and its neighbors are
replaced by new species with IID U[0, 1] fitnesses.

Watch simulation

Simulations suggest

πN →
N→∞

IID U[pc , 1], where pc ∼ 2/3,

and πN is the stationary distribution.

Open.
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Bak Sneppen Avalanches

An avalanche from threshold p is a part of the path from time all fitnesses are ≥ p
until next time this happens.

The avalanches provide a natural regenerative structure for the process.

I Evolution of avalanche depends on the past only through the location of site with
lowest fitness when started.

I As a result, the sequence of durations of avalanches are IID, and so is the number
of vertices affected during each avalanche, AKA the range of the avalanche.
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Bak-Sneppen Avalanche Statistics

Notation

DN(p) = Duration of avalanche from threshold p

RN(p) = Range of avalance from threshold p

PN(p) = P(RN(p) = N)

Consider an avalanche from threshold p on Z with initial fitness configuration

. . . , 1, 1, . . . , p
↑

origin

, 1, 1, . . .

As before, let

D∞(p) = Duration of avalanche

R∞(p) = Range of avalanche

P∞(p) = P(R∞(p) =∞).

Theorem 1 (Meester-Znamenski ‘04)
EDN(p)→ ED∞(p), ERN(p)→ ER∞(p),PN(p)→ P∞(p).

I Asymptotic properties can be studied by considering the infinite system.

I Main idea: embedding in and coupling of finite system in infinite system.
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Critical Thresholds

Define

pD = inf{p : ED∞(p) =∞}
pR = inf{p : ER∞(p) =∞}
pP = inf{p : P∞(p) > 0}

Theorem 2 (Meester-Znamenski ‘03,Meester-Znamenski ‘04)

1. 0 < pD = pR ≤ pP < 1− e−68.

2. If pR = pP , then πN →
N→∞

IID U[pP , 1].

Letting F be the fitness at some distinguished site 0, then

Proposition 1

1. πN(F ≤ pD)→ 0.

2. πN(F ∈ ·|F > pP)→ U[pP , 1].

This was not stated in the paper, but follows from the proofs.
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Bak Sneppen, a little more

Proposition 2 (B. WIP)
Let

ρ = inf
p,d

∞∑
k=1

1

dkpk
,

where the infimum is taken over all probability distributions (p1, p2, . . . ) on N and
all-integer nondecreasing valued sequences (dk )k∈N with the growth constraint
d1 = 1, dk+1 < 2dk for k > 1. Then

pP ≤ 1− e−ρ,

I Simulations give ρ < 11.3.

I We need to get to − ln 1
3

= 1.09861228867.

Theorem 3 (B. WIP)
If P(R∞(p) > r) ≥ cr−α for some α < 1, then pP ≤ p.

I Roughly speaking, if R∞(p) “little” short of being integrable, then p is already
above pP .
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Bak Sneppen – on proofs

I Tool: Graphical representation of avalanches on Z, due to Meester and his
coauthors.

I Switch from uniform fitnesses to Exp(1). This allows for Poisson process
techniques.

At end of avalanche from threshold b, fitness of sites in its range IID b+Exp(1).

I To each site attach a rate-1 Poisson process, processes are independent.

I Suppose the avalanche from threshold b starting from the origin has the range
given by the arrow.

I Fitness distribution of sites in range coincides with the first arrivals of the Poisson
processes above b.

I The range of avalanche from threshold b + ε will be at least 3
2
× Rb, if at least

one of the avalanches in the orange region extends to the right at least as Rb did.

I Allows to approach through thinning of a Poisson Point Process.

I For large enough b, one can show that exists an infinite cascade of such
avalanches below fitness b + ε.

0

b

b+ε
b+ε′



Local Bak-Sneppen

Joint with R.C. Silva



Two Geometries

What would be a “proper” tractable analog for Bak-Sneppen ?

The difficulty in the Bak-Sneppen model stems from the following:

I Use complete graph geometry to locate the global minimum.

I Use “nearest neighbor” geometry to determine at what vertices species will be
replaced.

A first attempt at this question would be

I Use one geometry.

The complete graph geometry is trivial so we’re left with the latter.
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Local Bak-Sneppen

Consider a finite, connected (undirected) graph G = (V ,E).

Initially

I Assign IID U[0, 1] fitnesses to each v ∈ V .

I Set X0 as the vertex with lowest fitness.

Time evolution

I Given Xn, set Xn+1 to be the vertex with minimal fitness among u ∼ Xn and Xn

itself.

I Set fitness of all elements in neighborhood of Xn+1 as IID U[0, 1], independent of
past.

Observe

I Markov chain on state space = product of V and [0, 1]-valued functions on V .

I Chain is ergodic.

What can we say about this new process ?
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Stationary Distribution for Local Bak-Sneppen

Notation

I For v ∈ V , Av = {u ∈ V : {u, v} ∈ E or u = v}.
I Random walk on G : from v ∈ V move to uniformly sampled u ∈ Av .

I Stationary distribution: µ(v) = |Av |∑
u∈V |Au |

.

I If U1, . . . ,Un are IID U[0, 1], then set U(n, [0, 1]) as the distribution

P(U1 ∈ ·|U1 > min{U2, . . . ,Un}).

Theorem 4 (Silva-B.)

I Let (Zu
n : n ∈ Z+) be independent random walks on G with Zu

0 = u.

I Sample X independently according to µ.

I Set
τv = inf{n ∈ Z+ : ZX

n ∈ Av}, and Vi = {v ∈ V : τv = i}.

Given V0,V1, . . . , assign fitnesses at each v ∈ V , which are independent and are

1. U[0, 1] for v ∈ AX = V0.

2. U(|AZX
i
|, [0, 1]) if v ∈ Vi , i > 0.

Then the joint distribution of X and the fitnesses is stationary for the local
Bak-Sneppen.
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Local Bak-Sneppen for Regular Graphs

Corollary 1
If G is d-regular, then the stationary distribution for the local Bak-Sneppen satisfies:

I X is uniform.
I Given X , the fitnesses are independent and

1. U[0, 1] for vertices in AX .
2. U(d + 1, [0, 1]) for all other vertices.

Now send size to infinity

Corollary 2
Suppose that (Vn : n ∈ N) is an increasing sequence of finite sets. For each n, let
Gn = (Vn,En) be a d-regular connected graph.
Then

I The fitnesses under the stationary distribution for the local Bak-Sneppen on Gn

converge weakly to an IID measure with marginal U(d + 1, [0, 1]).

I IID structure, as expected for Bak-Sneppen.

I Unlike Bak-Sneppen: no threshold.
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Guiol-Machado-Schinazi

Why ?

I Have population growth be part of model, not external parameter.

I Tractability.

Construction

I The population size is a reflected random walk on Z+ (that is random walk minus
its running minimum).

I When population increases, AKA birth (possibly multiple), new individuals are
assigned IID U[0, 1] fitnesses.

I When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?

More precisely, letting F̂n(f ) denote the empirical fitness distribution

F̂n(f ) =

{
prop. with fitness ≤ f if pop. size is > 0

CDF of δ0 otherwise.

Understand limit (LLN) and fluctuations (CLT) of F̂n as n→∞.
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GMS Law of Large Numbers

Notation.

I I
dist
= Incement of random walk.

I I = I+ − I− where,
I+ = max(I , 0) is the positive increment; and
I− = max(−I , 0) the nagative increment.

Assumptions.

I E |I | <∞.

I Transience: EI+ > EI−.

Theorem 5 (GMS, Volkov-Skevi, B.)
Let fc = EI−/EI+ ∈ [0, 1). Then

F̂n → F∞ := CDF of U[fc , 1], uniformly, a.s.

If I is deterministic (that is population grows deterministically), this is
Glivenko-Cantelli.
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GMS LLN

Idea of Proof
I Size of population with fitness ≤ f is reflected random walk with drift

fEI+ − EI−.
I Transient if f > fc
I Null recurrent if f = fc
I Positive recurrent if f < fc

I If f > fc , there exists finite time after which there will always be a species with
lower fitness.

I Therefore, the proportion of species with fitness > fc which will be eliminated
tends to 0.

0 1 2 3 4 5 6

x 10
5

0

200

400

600

800

1000

1200

1400
f > fc

f = fc

f < fc



GMS LLN

Idea of Proof
I Size of population with fitness ≤ f is reflected random walk with drift

fEI+ − EI−.
I Transient if f > fc
I Null recurrent if f = fc
I Positive recurrent if f < fc

I If f > fc , there exists finite time after which there will always be a species with
lower fitness.

I Therefore, the proportion of species with fitness > fc which will be eliminated
tends to 0.

0 1 2 3 4 5 6

x 10
5

0

200

400

600

800

1000

1200

1400
f > fc

f = fc

f < fc



GMS LLN

Idea of Proof
I Size of population with fitness ≤ f is reflected random walk with drift

fEI+ − EI−.
I Transient if f > fc
I Null recurrent if f = fc
I Positive recurrent if f < fc

I If f > fc , there exists finite time after which there will always be a species with
lower fitness.

I Therefore, the proportion of species with fitness > fc which will be eliminated
tends to 0.

0 1 2 3 4 5 6

x 10
5

0

200

400

600

800

1000

1200

1400
f > fc

f = fc

f < fc



GMS LLN

Idea of Proof
I Size of population with fitness ≤ f is reflected random walk with drift

fEI+ − EI−.
I Transient if f > fc
I Null recurrent if f = fc
I Positive recurrent if f < fc

I If f > fc , there exists finite time after which there will always be a species with
lower fitness.

I Therefore, the proportion of species with fitness > fc which will be eliminated
tends to 0.

0 1 2 3 4 5 6

x 10
5

0

200

400

600

800

1000

1200

1400
f > fc

f = fc

f < fc



GMS LLN

Idea of Proof
I Size of population with fitness ≤ f is reflected random walk with drift

fEI+ − EI−.
I Transient if f > fc
I Null recurrent if f = fc
I Positive recurrent if f < fc

I If f > fc , there exists finite time after which there will always be a species with
lower fitness.

I Therefore, the proportion of species with fitness > fc which will be eliminated
tends to 0.

0 1 2 3 4 5 6

x 10
5

0

200

400

600

800

1000

1200

1400
f > fc

f = fc

f < fc



GMS LLN

Idea of Proof
I Size of population with fitness ≤ f is reflected random walk with drift

fEI+ − EI−.
I Transient if f > fc
I Null recurrent if f = fc
I Positive recurrent if f < fc

I If f > fc , there exists finite time after which there will always be a species with
lower fitness.

I Therefore, the proportion of species with fitness > fc which will be eliminated
tends to 0.

0 1 2 3 4 5 6

x 10
5

0

200

400

600

800

1000

1200

1400
f > fc

f = fc

f < fc



GMS LLN

Idea of Proof
I Size of population with fitness ≤ f is reflected random walk with drift

fEI+ − EI−.
I Transient if f > fc
I Null recurrent if f = fc
I Positive recurrent if f < fc

I If f > fc , there exists finite time after which there will always be a species with
lower fitness.

I Therefore, the proportion of species with fitness > fc which will be eliminated
tends to 0.

0 1 2 3 4 5 6

x 10
5

0

200

400

600

800

1000

1200

1400
f > fc

f = fc

f < fc



GMS LLN

Idea of Proof
I Size of population with fitness ≤ f is reflected random walk with drift

fEI+ − EI−.
I Transient if f > fc
I Null recurrent if f = fc
I Positive recurrent if f < fc

I If f > fc , there exists finite time after which there will always be a species with
lower fitness.

I Therefore, the proportion of species with fitness > fc which will be eliminated
tends to 0.

0 1 2 3 4 5 6

x 10
5

0

200

400

600

800

1000

1200

1400
f > fc

f = fc

f < fc



GMS Central Limit Theorem
Let

∆̂n = F̂n − F∞.

Then we know that ∆̂n converges to 0, uniformly, a.s.

Next, we look at fluctuations.

Assumption
E(I 2) <∞.

Processes appearing in limit

I W1 standard BM, and the corresponding bridge Br1:

Br1(f ) := W1(f )− fW1(1).

I If fc = 0, choose W̃1 ≡ 0.

I If fc > 0 : W̃1 standard BM derived from W1 as follows :
I U ∼ U[fc , 1], independent of W1.
I An “interval” Ãt of length (1 − fc )t, shifted by U.

I W̃1(t) :=
1√

fc (1 − fc )

(
(1 − fc )W1(fc t) + fc

∫
1Ãt

(s)dW1(s)

)
.

0 1

fc t

fc U

(1 − fc )t

I W2, standard BM, independent of W1,U.
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GMS CLT

For a path ω ∈ D[0, 1], let Ψ(ω) := ω(1)− inf
0≤t≤1

ω(t)

Theorem 6 (B.)

√
n

(
∆̂n(·)|(fc ,1]

∆̂n(fc )

)
⇒

Gaussian process

1

EI+


︷ ︸︸ ︷
σ1Br1 + σ2W2(1)(1− F∞)

Ψ(σ̃1W̃1 + σ2W2)︸ ︷︷ ︸


Positive RV

,

with σ1 =
√
EI+, σ̃1 =

√
fc (1− fc )EI+, σ2 =

√
f 2
c E(I 2

+) + E(I 2
−), and the

convergence is D(fc , 1]× R.

Marginals

√
n∆̂n(f )⇒


σ(f ∧ 1)N(0, 1) f > fc ;

σ(fc )|N(0, 1)| f = fc ;

0 f < fc ,

where σ(f ) :=
1

E(I+)

√
f (1− f )E(I+) +

(
1− f

1− fc

)2 (
f 2
c E(I 2

+) + E(I 2
−)
)
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GMS CLT Discussion

Recall
√
n

(
∆̂n(·)|(fc ,1]

∆̂n(fc )

)
⇒

1

EI+

(
σ1Br1 + σ2W2(1)g

Ψ(σ̃1W̃1 + σ2W2)

)
Origin of terms

1. Bridge arising from empirical process associated with births.
Only surviving term when fc = 0, recovering classical CLT for empirical processes.

2. Fluctuations from bridge due to randomness of births, and existence of deaths

3. Population with fitness ≤ fc is null recurrent random walk above its running
minimum, hence Ψ.
Note that it’s of order

√
n, hence only appearing in CLT.

a. Scaling limit for the births.
b. Fluctuations from randomness of births, and negative increments.

Discontinuity

I The limit process is not in D[fc , 1], because its distribution at fc is
σ(fc )|N(0, 1)| > 0 a.s., while its limit from the right is σ(fc )N(0, 1).

I The standard normal random variables above are NOT the same.
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GMS with selection

Assume
P(I = 1) = p = 1− P(I = −1).

New feature
I At birth the individual obtains

I w/prob r new U[0, 1] fitness.
I w/prob 1 − r , an existing fitness, uniformly among existing fitnesses, or new one if

population is zero.

I At death, eliminate all species with lowest fitness.

We refer to the population with fixed fitness as a site.

Observation

I Probability of new site is pr .

I Probability of eliminating a site is 1− p.

Conclusion

1. Number of sites coincides with GMS with
P(I = 1) = pr , P(I = −1) = 1− p and P(I = 0) = 1− pr − (1− p).

2. The system is transient if and only if pr > (1− p).

3. In this case fc = 1−p
pr

, and the asymptotic site fitness distribution is U[fc , 1].
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GMS w/Selection
What is site size distribution ?

Let Ĥn denote the empirical distribution of sites and their respective fitness:

Ĥn(A× B) =
# sites whose size is in A and whose fitness is in B

# sites
.

Theorem 7 (Schinazi-B. ‘15)

Ĥn → Geom

(
pr − (1− p)

p − (1− p)

)
⊗ U[fc , 1], a.s.
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Figure: Empirical dist of site sizes (p = 0.8, r = 0.4, n = 106) and corresponding Geom.



GMS w/selection

Why Geometric ?

Fix site size k > 1. Consider number of sites of size k with fitness > fc .

Assume the proportion of such sites converges to H∞(k).

I Number of such sites grows at speed

p(1− r)(H∞(k − 1)− H∞(k)) + o(1) = H∞(k) ∗ (pr − (1− p))

Then change in the number of sites of size k occurs only at
I At birth

I Increases by 1 when new individual selects a site of size k − 1.
I Decreases by 1 when new individual selects a site of size k.

I At death, but occurs only finitely often.

I Equality because # sites grows at speed pr − (1− p).

This equation guarantees geometric decay.

The problem
Proving that the assumption actually holds.

I Easy calculus exercise if pr > 1
2

.

I Otherwise: use “mean reversion” away from linear curve.
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Thank y ou.

Ad: Markov chains REU at UConn this summer.
Details on our mathprograms.org page or on markov-chains-reu.math.uconn.edu

https://www.mathprograms.org/db/programs/652
http://markov-chains-reu.math.uconn.edu

	Introduction
	Bak Sneppen
	Avalanches
	Bak Sneppen Critical Thresholds
	Some new results

	Local Bak-Sneppen
	Guiol-Machado-Schinazi
	Introduction
	LLN
	CLT
	Selection


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PauseLeft: 
	0.PlayLeft: 
	0.PlayPauseLeft: 
	0.PauseRight: 
	0.PlayRight: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	1.30: 
	1.31: 
	1.32: 
	1.33: 
	1.34: 
	anm1: 
	1.EndLeft: 
	1.StepLeft: 
	1.PauseLeft: 
	1.PlayLeft: 
	1.PlayPauseLeft: 
	1.PauseRight: 
	1.PlayRight: 
	1.PlayPauseRight: 
	1.StepRight: 
	1.EndRight: 
	1.Minus: 
	1.Reset: 
	1.Plus: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	2.7: 
	2.8: 
	2.9: 
	2.10: 
	2.11: 
	2.12: 
	2.13: 
	2.14: 
	2.15: 
	2.16: 
	2.17: 
	2.18: 
	2.19: 
	2.20: 
	2.21: 
	2.22: 
	2.23: 
	2.24: 
	2.25: 
	2.26: 
	2.27: 
	2.28: 
	2.29: 
	2.30: 
	2.31: 
	2.32: 
	2.33: 
	2.34: 
	anm2: 
	2.EndLeft: 
	2.StepLeft: 
	2.PauseLeft: 
	2.PlayLeft: 
	2.PlayPauseLeft: 
	2.PauseRight: 
	2.PlayRight: 
	2.PlayPauseRight: 
	2.StepRight: 
	2.EndRight: 
	2.Minus: 
	2.Reset: 
	2.Plus: 
	3.0: 
	3.1: 
	3.2: 
	3.3: 
	3.4: 
	3.5: 
	3.6: 
	3.7: 
	3.8: 
	3.9: 
	3.10: 
	3.11: 
	3.12: 
	3.13: 
	3.14: 
	3.15: 
	3.16: 
	3.17: 
	3.18: 
	3.19: 
	3.20: 
	3.21: 
	3.22: 
	3.23: 
	3.24: 
	3.25: 
	3.26: 
	3.27: 
	3.28: 
	3.29: 
	3.30: 
	3.31: 
	3.32: 
	3.33: 
	3.34: 
	anm3: 
	3.EndLeft: 
	3.StepLeft: 
	3.PauseLeft: 
	3.PlayLeft: 
	3.PlayPauseLeft: 
	3.PauseRight: 
	3.PlayRight: 
	3.PlayPauseRight: 
	3.StepRight: 
	3.EndRight: 
	3.Minus: 
	3.Reset: 
	3.Plus: 


