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Abstract

A sequence of random variables (RVs) is exchangeable if its distribution is invariant under

permutations. For example, every sequence of independent and identically distributed (IID)

RVs is exchangeable. The main result on exchangeable sequences of random variables is

de Finentti’s theorem, which identifies exchangeable sequences as conditionally IID. In this

thesis, we explore exchangeability, provide an elementary proof of de Finetti’s theorem, and

present two applications: the classical Polya’s urn model and a toy model for biological

evolution.
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Chapter 1

Introduction

1.1 Motivation: Law of Large Numbers (LLN)

The law of large numbers [4, Theorem 2.3.5., p. 69] is one of the foundations of probability

theory. It asserts that if X = (Xn : n ∈ N = {1, 2, . . . }) is a sequence of independent

and identically distributed (IID) random variables (RVs) with finite expectation µ and

Sn := X1 + · · · + Xn, then the empirical averages Sn/n converge both in probability, almost

surely, and in L1 to µ. Convergence in probability is the statement that for every ϵ > 0,

lim
n→∞

P
(∣∣∣∣Sn

n
− µ

∣∣∣∣> ϵ
)

= 0.

Convergence almost surely is the statement that there exists an event E, where P (E) = 1,

such that on E,

lim
n→∞

Sn

n
= µ,

and convergence in L1 is the statement

lim
n→∞

E
[∣∣∣∣Sn

n
− µ

∣∣∣∣] = 0

[4, Theorem 4.6.3., p. 245]. Convergence in L1 implies convergence in probability through

Markov’s inequality. Convergence almost surely also implies convergence in probability, and
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1.2 LLN FOR CONDITIONAL IID

convergence in probability implies convergence almost surely along some (deterministic)

subsequence [4, Section 4.6, p. 244-249].

1.2 LLN for Conditional IID

1.2.1 IID Bernoulli

Consider the simplest non-trivial case corresponding to the RVs being Bernoulli distributed

with parameter Θ, a distribution denoted by Bern(Θ). That is, Θ is a constant in [0, 1] and

P (Xn = 1) = Θ = 1 − P (Xn = 0). In this case, the sequence X can be viewed as representing

the results in a sequence of experiments or trials and Xn is the indicator of “success” in the n-

th trial, where the probability of success in each trial is equal to the constant Θ, independently

of all other trials. This means that the event Xn = 1 represents a success in the n-th trial

and the event Xn = 0 represents a failure in the n-th trial. The RV Sn counts the number of

successes in the first n trials and the empirical average Sn/n is the proportion of successes in

the first n trials. The law of large numbers states that as n → ∞, these random proportions

approach the deterministic constant µ = E[X1] = 1 ∗ P (X1 = 1) + 0 ∗ P (X1 = 0) = Θ in

probability, almost surely, and in L1.

1.2.2 Conditional IID Bernoulli

We continue the discussion from the last section, making things a little more complicated by

assuming that the probability of success, Θ, is itself a RV and that, conditioned on Θ, X is

an IID sequence of Bern(Θ). As we will now show, this implies that the empirical averages

converge to the random variable Θ in probability. More precisely, for every ϵ > 0,

lim
n→∞

P
(∣∣∣∣Sn

n
− Θ

∣∣∣∣> ϵ
)

= 0.

Indeed, if we fix ϵ > 0 and let fn(θ) = P (|Sn

n
− θ| > ϵ | Θ = θ), the fact that the sequence X

is IID under the conditional measure P ( · |Θ = θ) coupled with the law of large numbers
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1.2 LLN FOR CONDITIONAL IID

applied to this probability measure yields

lim
n→∞

fn(θ) = 0. (1.1)

By definition of conditional probability, P (|Sn

n
− Θ| > ϵ) = E[fn(Θ)]. Using (1.1) and the

fact that |fn(Θ)| ≤ 1, the Bounded Convergence Theorem [4, Theorem 1.5.3., p. 26] yields

that limn→∞ E[fn(Θ)] = E[limn→∞ fn(Θ)] = 0, or:

lim
n→∞

P
(∣∣∣∣Sn

n
− Θ

∣∣∣∣> ϵ
)

= lim
n→∞

E[fn(Θ)] = E
[

lim
n→∞

fn(Θ)
]

= 0.

Minor adaptions of the argument allow us to conclude that the empirical averages also

converge in L1. A more involved argument can be used to show that the convergence also

holds almost surely.

To make this more concrete, consider the following example.

Example 1.2.1. In our pocket, we have two coins: one fair and one biased, landing Heads with

probability 2/3 and Tails with probability 1/3. We randomly pick a coin from our pocket and

start tossing it repeatedly. We implicitly assumed the following: each coin is equally likely

to be picked, and once chosen, the sequence of tosses is IID. Let Θ be the probability that

the coin picked is fair and for n ∈ N, let Xn be the indicator that the n-th toss lands Heads.

Then, in the event that the fair coin was picked, Θ = 1
2 and in the event that the biased coin

was picked, Θ = 2
3 . Each of these events has probability 1

2 . Conditioned on Θ, the results of

our tosses are IID Bernoulli with parameter Θ. Therefore, as we have just shown above, the

empirical averages converge in probability to the random variable Θ.

We continue by examining the distribution of X through analysis of its covariance

structure. Recall that the variance of a square-integrable RV, U , Var(U) is defined as

Var(U) = E[(U − E[U ])2] = E[U2] − E[U ]2. The variance is nonnegative and is equal to 0

if and only if the RV is constant. The covariance of two square-integrable RVs U and V ,
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1.2 LLN FOR CONDITIONAL IID

denoted by Cov(U, V ), is defined as

Cov(U, V ) = E[(U − E[U ])(V − E[V ])] = E[UV ] − E[U ]E[V ].

Clearly Cov(U, U) = Var(U), while if U and V are independent, then Cov(U, V ) = 0.

In our case, for every i ∈ N, we have E[Xi] = E[P (Xi = 1|Θ)] = E[Θ]. In addition,

E[XiXi] = E[X2
i ] = E[Xi] = Θ because Xi ∈ {0, 1}. When j ̸= i, we use the conditional

independence to obtain

E[XiXj] = E
[
E[XiXj|Θ]

]
= E

[
E[Xi|Θ]E[Xj|Θ]

]

= E[Θ2],

Putting these together we have

Cov(Xi, Xj) =


E[Θ](1 − E[Θ]) i = j

Var(Θ) = E[Θ2] − E[Θ]2 i ̸= j.

When is the conditionally IID sequence X actually an IID sequence? As noted above, a

necessary condition is Cov(Xi, Xj) = 0 for i ̸= j, which in our setting is equivalent to

Var(Θ) = 0, which is equivalent to the existence of some θ ∈ [0, 1] such that P (Θ = θ) = 1.

On the other hand, if the latter condition holds, then the distribution of X coincides with its

distribution conditioned on Θ = θ, and therefore both are IID Bern(θ). In other words, our

conditionally IID sequence X is IID if and only if Θ is a constant RV.

In this section we introduced one way of generating a conditionally IID sequence through

some auxiliary RV Θ. In the next sections, we will characterize conditional IID sequences in

terms of properties intrinsic to the sequence. The main result, de Finetti’s Theorem, will

show that conditionally IID sequences are exactly those sequences whose distributions are

not affected by relabeling the RVs, also known as exchangeable sequences, and that these

sequences can be generated by the very same procedure described in this section, with Θ
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defined as the limit of the empirical means, an object intrinsic to the sequence.
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Chapter 2

Exchangeability

2.1 Basic Notions

To develop the discussion, we need a few more notions.

Definition 2.1.1. Let N ∈ N. A permutation on {1, . . . , N} is a bijection on {1, . . . , N}, a

one-to-one and onto function from {1, . . . , N} to itself.

Any permutation σ has a unique inverse which is also a permutation, denoted by σ−1,

satisfying j = σ(i) if and only if i = σ−1(j) or, equivalently, (σ−1 ◦ σ)(i) = i, where ◦ denotes

composition of functions. One trivial but important example of a permutation is the identity

mapping σ(i) = i. Another example is σ(i) = N + 1 − i. An easy calculation shows that

there are exactly N ! permutations of {1, . . . , N}. It is also easy to show that the set of

permutations on {1, . . . , N} is group with respect to composition of functions.

Definition 2.1.2. A sequence of RVs, X = (Xn : n ∈ N), is called exchangeable if, for every

N ∈ N and every permutation σ of {1, . . . , N}, the joint distribution of (X1, . . . , XN) is the

same as the joint distribution of (Xσ(1), . . . , Xσ(N)).

The simplest example of an exchangeable sequence is an IID sequence. We now present a

very important example which is not IID.
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2.1 BASIC NOTIONS

Example 2.1.1 (Polya’s Urn, [4], Section 4.3.2, p. 226). Consider an urn initially containing

b black marbles and w white marbles where b, w ∈ N. We begin a sequence of trials where,

during each, a marble is drawn from the urn at random (meaning uniformly), independently

of the past. This marble is then replaced in the urn, along with another marble of the same

color (we assume that we have an infinite supply of marbles of each color). For n ∈ N, let Xn

be the indicator that in the n-th trial, a black marble is drawn.

Let’s examine the probabilities of drawing one white and two black marbles in a total

of three trials. There are three different ways that this sequence can be realized, being

X1 = 0, X2 = 1, X3 = 1, X1 = 1, X2 = 0, X3 = 1, and X1 = 1, X2 = 1, X3 = 0. Clearly, the

distinction between these ways is the order in which the marbles are drawn. The probability

of each distinct sequence is calculated below.

P (X1 = 0, X2 = 1, X3 = 1) = P (X1 = 0)P (X2 = 1|X1 = 0)P (X3 = 1|X1 = 0, X2 = 1)

= w

b + w
× b

b + w + 1 × b + 1
b + w + 2

= w × b × (b + 1)
(b + w) × (b + w + 1) × (b + w + 2) .

P (X1 = 1, X2 = 0, X3 = 1) = P (X1 = 1)P (X2 = 0|X1 = 1)P (X3 = 1|X1 = 1, X2 = 0)

= b

b + w
× w

b + w + 1 × b + 1
b + w + 2

= w × b × (b + 1)
(b + w) × (b + w + 1) × (b + w + 2) .

P (X1 = 1, X2 = 1, X3 = 0) = P (X1 = 1)P (X2 = 1|X1 = 1)P (X3 = 0|X1 = 1, X2 = 1)

= b

b + w
× b + 1

b + w + 1 × w

b + w + 2

= w × b × (b + 1)
(b + w) × (b + w + 1) × (b + w + 2) .

As we can see, these probabilities are all equal, despite the order in which the two black and

one white marbles are drawn differing. This may suggest that the sequence is exchangeable.

Now, let’s extend this same logic to any finite number of trials.

Let us now prove a general formula for the probability of the event ∩n
i=1{Xi = xi} for

7



2.1 BASIC NOTIONS

any given n ∈ N and x = (x1, . . . , xn) ∈ {0, 1}n. This is done by induction. To do so, we

need some notation. Let bn = ∑n
i=1 xi. For simplicity, let wn = n − bn. Of course, bn and wn

represent the number of black and white balls sampled respectively.

Our goal is to prove the following:

P

(
n⋂

i=1
{Xi = xi}

)
= (b + w − 1)!

(b − 1)!(w − 1)! × (b + bn − 1)!(w + wn − 1)!
(b + w + n − 1)! (2.1)

The base case for the proof is n0 = 1. In this case, (2.1) reads

(b + w − 1)!
(b − 1)!(w − 1)! × (b + b1 − 1)!(w + wn − 1)!

(b + w)! = (b + b1 − 1)!
(b − 1)! × (w + w1 − 1)!

(w − 1)! × 1
b + w

.

Since the marble drawn must either be black or white, we now encounter two cases: either

b1 = 1 and w1 = 0 or b1 = 0 and w1 = 1. We examine these two cases below:

• If the marble sampled in the first trial is black, meaning b1 = 1 and w1 = 1 − 1 = 0,

then the right-hand side becomes

(b + 1 − 1)!
(b − 1)! × (w + 0 − 1)!

(w − 1)! × 1
b + w

= b!
(b − 1)! × (w − 1)!

(w − 1)! × 1
b + w

= b × 1 × 1
b + w

= b

b + w

Thus, equation (2.1) gives b
b+w

.

• If the marble sampled in the first trial is white, meaning b1 = 0 and w1 = 1 − 0 = 1,

then the right-hand side becomes

(b + 0 − 1)!
(b − 1)! × (w + 1 − 1)!

(w − 1)! × 1
b + w

= (b − 1)!
(b − 1)! × w!

(w − 1)! × 1
b + w

= 1 × w × 1
b + w

= w

b + w

Thus, in this case, equation (2.1) gives w
b+w

.

We continue to the induction step. Using conditional probability,

P (Xn+1 = xn+1, Xn = xn, . . . , X1 = x1) = P (Xn+1 = xn+1|Xn = xn, . . . , X1 = x1)

× P (X1 = x1, . . . , Xn = xn).
(2.2)

8



2.1 BASIC NOTIONS

By the induction hypothesis, we assume that equation (2.1) is true for all positive integers

n = k where k ≥ n0 = 1. Namely,

P (X1 = x1, . . . , Xn = xn) = (b + w − 1)!
(b − 1)!(w − 1)!

(b + bn − 1)!(w + wn − 1)!
(b + w + n − 1)! .

At the n + 1-th trial, we randomly draw a ball from the urn which now contains a total of

b + w + n balls, of which exactly b + bn are black and w + wn are white. This gives:

P (Xn+1 = xn+1|Xn = xn, . . . , X1 = x1) =


(b + bn) × 1

b+w+n
if xn = 1

(w + wn) × 1
b+w+n

if xn = 0
.

Let’s continue case by case. If the n+1-th marble is black, xn+1 = 1, and thus bn+1 = bn+1 and

wn+1 = wn. The conditional probability above can be written as (b+bn+1−1)/(b+w+(n+1)−1).

Plugging this into (2.2) with the induction hypothesis then gives (2.1). Similarly, if the

n + 1-th marble is white, xn+1 = 0, then wn+1 = wn + 1 and bn+1 = bn. Therefore, the

conditional probability is (w + wn+1 − 1)/(b + w + (n + 1) − 1), and (2.1) follows.

We observe that when freezing b, w, and n, the probability is a function of the number of

black marbles sampled, a quantity invariant under permutations. Therefore, the sequence X

is exchangeable.

In Section 2.6 we will generalize the model.

An important feature of exchangeable sequences is that the RVs are identically dis-

tributed, or, in other words, that being identically distributed is a necessary condition for

exchangeability. Suppose that X is exchangeable. Then, for x ∈ R and n ≥ 2 we have

P (X1 ≤ x) = P (X1 ≤ x, X2 ∈ R, . . . , Xn ∈ R).

Let σ be a permutation on {1, . . . , n} satisfying σ(1) = n, σ(n) = 1, σ(j) = j for j =

2, . . . , n − 1. Then,

P (X1 ≤ x, X2 ∈ R, . . . , Xn ∈ R) = P (Xσ(1) ≤ x, Xσ(2) ∈ R, . . . , Xσ(n) ∈ R) = P (Xn ≤ x).

9



2.1 BASIC NOTIONS

Therefore, the distribution of X1 and Xn is the same for all n ∈ N.

We now give a very simple example of a sequence X of identically distributed RVs which

is not exchangeable.

Example 2.1.2. Let X1 ∼ Bern(1
2). For n ∈ N, let X2n = 1 − X1 and X2n+1 = X1. As can be

easily seen, Xn ∼ Bern(1
2) for all n ∈ N.

Let σ be the permutation on {1, 2, 3} given by σ(1) = 1, σ(2) = 3, and σ(3) = 2. Then

P (X1 = 1, X2 = 0, X3 = 1) = 1
2 ,

while

P (Xσ(1) = 1, Xσ(2) = 1, Xσ(3) = 0) = P (X1 = 1, X3 = 0, X2 = 0) = 0.

Thus, X is not exchangeable.

Proposition 2.1.3. Let X = (Xn : n ∈ N) be a sequence of random variables. If there exists

a random variable Θ such that the distribution of X, when conditioned on Θ, is IID, then X

is exchangeable. In particular, any IID sequence is exchangeable. In this case, Θ is called the

mixing RV.

This proposition describes how to construct some examples of exchangeable sequences.

The sequences discussed in Section 1.2.2 are of this type. To explain the term “mixing,”

consider the case where Θ is discrete, say P (Θ = θi) = pi where pi ≥ 0 and ∑ pi = 1. Now,

P (X ∈ ·) = ∑
i piP (X ∈ ·|Θi = θi), that is, we are mixing the conditional IID distributions,

assigning the one corresponding to Θ = θi probability (or weight) pi.

Proof. For simplicity, we will assume that the RVs in the sequence X are discrete and that Θ

is a discrete random variable. We write pθ for the probability mass function of X1 conditioned

on θ. That is, pθ(x) = P (X1 = x|Θ = θ). Since X conditioned on Θ is IID, it follows that for

every θ, N ∈ N, and x1, . . . , xN , we have

P (X1 = x1, . . . , XN = xN |Θ = θ) =
N∏

n=1
pθ(xn).

10



2.2 DE FINETTI’S THEOREM

Now, let σ be a permutation of {1, . . . , N}. Then, from the definition of σ−1, we have that

{Xσ(1) = x1, . . . , Xσ(N) = xN} = {X1 = xσ−1(1), X2 = xσ−1(2), . . . , XN = xσ−1(N)}.

Therefore,

P (Xσ(1) = x1, . . . , Xσ(N) = xN |Θ = θ) =
N∏

n=1
pθ(xσ−1(xn)) =

N∏
n=1

pθ(xn)

= P (X1 = x1, . . . , XN = xN |Θ = θ).
(2.3)

To complete the proof, we observe that these joint probability functions are equal to each

other despite the permutation having reordered the events. Thus, by definition, these IID

sequences are exchangeable.

This leads to the question of whether the converse of Proposition 2.1.3 holds. That is,

can every exchangeable sequence be expressed as a sequence of conditionally IID RVs? De

Finetti’s theorem, Theorem 2.2.1, provides an affirmative answer in the case that the sequence

takes values in {0, 1}.

2.2 de Finetti’s Theorem

In this section we present de Finetti’s Theorem. We will state it here and provide a proof in

Section 2.4, after we develop some necessary tools.

Theorem 2.2.1 (de Finetti’s Theorem [6], Theorem 2). Let X = (Xn : n ∈ N) be a sequence

of {0, 1}-valued RVs which is exchangeable. Then,

(1) Θ := limn→∞
1
n

∑n
k=1 Xk almost surely.

(2) Conditioned on Θ, the random variables in X are IID Bern(Θ).

(3) For every m ∈ N, E[Θm] = E[X1 · · · Xm] = P (X1 = · · · = Xm = 1).

We make the following comments:

11



2.2 DE FINETTI’S THEOREM

• As Θ is a [0, 1]-valued RV, its distribution is determined by its moments which are

given by the third part of the theorem. This is because the moments determine the

expectation of f(Θ) for all polynomials Θ, and since the polynomials form a dense

subset of the continuous functions on [0, 1], the result follows. See [2, Example 9.1., p.

146] for details.

• This theorem is a partial converse of Proposition 2.1.3 in the sense that we limit the

RVs to be {0, 1}-valued. The mixing RV Θ is derived from the sequence.

• The assumption that X is an infinite sequence of RVs is necessary for the conclusion.

Below is a concrete example of a finite sequence of RVs which is exchangeable, yet the

conclusion of the theorem fails.

Example 2.2.1. Suppose that X is Bern(1
2) distributed. Consider the vector X := (X, 1 − X).

That is, we are looking at the first two variables in the sequence from Example 2.1.2. Consider

the Kronecker delta defined as follows:

δi,j =


1 if i = j

0 otherwise
.

Then, X is exchangeable, indeed,

P (X = i, 1 − X = j) = P (X = i, X = 1 − j) = 1
2δi,1−j = 1

2δj,1−i = P (X = j, 1 − X = i)

= P (1 − X = i, X = j).

In particular, take i = j = 1, P (X = 1, 1 − X = 1) = 0. Next, we argue by contradiction

assuming that X satisfies the conclusion of de Finetti’s theorem, namely, that there exists

a random variable Θ such that, conditioned on Θ, X and 1 − X are IID Bernoulli with

parameter Θ. In particular,
1
2 = P (X = 1) = E[P (X = 1|Θ)] = E[Θ] and

0 = P (X = 1, 1 − X = 1) = E[P (X = 1, 1 − X = 1|Θ)] = E[Θ2] = 0

12



2.3 CONVERGENCE RESULT

The first equality implies P (Θ > 0) > 0 and the second implies P (Θ > 0) = 0, a contradiction.

In light of the above, a description of finitely exchangeable sequences is another object of

interest. This topic was thoroughly studied in [3].

2.3 Convergence Result

In this section we present a lemma which leads to the proof of de Finetti’s theorem. Specifically,

we will show that exchangeable sequences - much like IID sequences - satisfy a law of large

numbers: the empirical averages converge to some limit. The difference from the IID case

is that the limit is in general and not deterministic. Notably and similarly to the IID case,

the limit is attained along any increasing subset of the RVs and is the same regardless of the

choice of the subset. Before we state our result, we review the notion of convergence in L2.

Definition 2.3.1. (1) A RV, X, is said to be in L2, or square integrable, if E[X2] < ∞.

The L2-norm of X, ∥X∥, is defined as
√

E[X2].

(2) A sequence, (Xn : n ∈ N), of RVs in L2 converges in L2 if there exists some RV, X, such

that limn→∞ ∥Xn − X∥ = 0. In this case, X is referred to as the limit of the sequence.

(3) A sequence of RVs in L2, (Xn : n ∈ N), is a Cauchy sequence in L2 if

limn→∞ supm≥0 ∥Xn+m − Xn∥ = 0.

We note that the L2 norm, ∥ · ∥, satisfies the triangle inequality: ∥X + Y ∥ ≤ ∥X∥ + ∥Y ∥.

Therefore, any convergent sequence is necessarily Cauchy. Moreover, ∥X∥ = 0 if and only if

X = 0 almost surely. This and the triangle inequality imply that if X and X ′ are two limits

of the same convergent sequence, then ∥X − X ′∥ = 0, equivalently, X = X ′ almost surely. In

other words, limits are unique (up to an additive RV which is equal to 0 with probability 1).

Finally, we have the following important completeness result [8, Theorem 25, p. 282]:

Theorem 2.3.2. Any Cauchy sequence in L2 is convergent. In this case, the limit is in L2.

13



2.3 CONVERGENCE RESULT

We comment that convergence in L2 implies convergence in measure. Indeed, if (Xn : n ∈

N) converges to X in L2, then Markov’s inequality gives:

P (|Xn − X| > ϵ) ≤ E[|Xn − X|2]/ϵ2.

Lemma 2.3.3. Let X be an exchangeable sequence of {0, 1}-valued RVs. Then

(1) The limit limn→∞
1
n

∑n
k=1 Xk converges in L2 to a limit Θ.

(2) Let I be an infinite subset of N with an infinite complement. Let K(n) = min{m ∈ N :

|I ∩ {1, . . . , m}| = n}. Let AI
n = 1

n

∑
i∈I,i≤K(n) Xi. Then, AI

n → Θ in L2.

We can think of I as an infinite sequence of positive integers, I = {ik : k ∈ N}, where

1 ≤ i1 < i2 < . . . . With this interpretation, K(n) = in.

Proof. Let An = 1
n

∑n
k=1 Xk. To prove the first part, it is enough to show that (An : n ∈ N)

is Cauchy in L2, and therefore converges in L2.

Fix some n, l ∈ N. Now,

An+l − An =
( 1

n + l
− 1

n

) n∑
k=1

Xk + 1
n + l

n+l∑
k=n+1

Xk.

Therefore, the square of the left hand side is equal to

l2

(n(n + l))2

(
n∑

k=1
Xk

)2

+ 1
(n + l)2

 n+l∑
k=n+1

Xk

2

− 2 l

n(n + l)(n + l)

(
n∑

k=1
Xk

) n+l∑
k=n+1

Xk

 .

The expectation of this expression reduces to a combinatorial calculation. Write µ =

E[X1] = E[X2
1 ] and ρ = E[X1X2]. It follows that the expectation is equal to

∥An+l − An∥2 = E[(An+l − An)2]

= l2

(n(n + l))2 (nµ + n(n − 1)ρ) + 1
(n + l)2 (lµ + l(l − 1)ρ) − 2 l

n(n + l)2 nlρ

=
(

l

n
+ 1

n2

)
l

(n + l)2 (µ − ρ)

≤
( 1

n
+ 1

n3

)
(µ − ρ) →

n→∞
0. (2.4)
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2.4 PROOF OF DE FINETTI’S THEOREM

This proves that (An : n ∈ N) is Cauchy in L2, and is therefore convergent in L2, which

completes the proof of the first part.

Clearly, the same argument proves that limn→∞ AI
n exists in L2. What remains to be

shown is that this limit, which we denote by θI , is independent of I. Although it may not be

immediately clear, the argument above already contains the proof of this statement.

We examine ∥AI
n − AK(n)∥2 = E[(AI

n − AK(n))2]. As a consequence of exchangeability,

this expectation is equal to E[(An − AK(n))2]. Since K(n) ≥ n, it follows from (2.4) that

limn→∞ E[(AI
n − AK(n))2] = 0. Therefore, as a result of the triangle inequality, it follows that

∥ΘI − Θ∥ ≤ ∥ΘI − AI
n∥ + ∥AI

n − AK(n)∥ + ∥AK(n) − Θ∥ →
n→∞

0,

completing the proof.

2.4 Proof of de Finetti’s Theorem

In this section, we’ll use Lemma 2.3.3 to prove de Finetti’s theorem 2.2.1. In order to

prove this, we will show that the variable Θ that the distribution of X is conditioned on

coincides with the mixing RV introduced in Proposition 2.1.3, making X exchangeable. As

the distribution of X is determined by the finite-dimensional distributions, it is enough to

show that for every n ∈ N and x = (x1, . . . , xn) ∈ {0, 1}n, the probability of ∩n
i=1{Xi = xi},

a quantity we denote by px, is the one obtained by a sequence which, conditioned on Θ, is

IID Bern(Θ). Conditioning on Θ, the probability that Bern(Θ) is x for some x ∈ {0, 1} is

given by Θx(1 − Θ)1−x. Therefore, we need to prove that

px = E
[
Θ
∑n

i=1 xi(1 − Θ)n−
∑n

i=1 xi

]
. (2.5)

Define a finite set of arithmetic progressions I1, . . . , In as follows:

Ij = {j + nk : k ∈ N} = {j + n, j + 2n, j + 3n, . . . }.
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2.5 APPLICATION: POLYA’S URN

By construction, I1, . . . , In are all disjoint. Next, using the exchangeability property, we can

replace X1 with Xℓ for ℓ ∈ I1 as follows:

px = P (X1+n = x1, X2 = x2, . . . , Xn = xn)

= P (X1+2n = x1, X2 = x2, . . . , Xn = xn)

= ...

= P (X1+kn = x1, X2 = x2, . . . , Xn = xn).

(2.6)

A visual representation of this shuffling can be seen within Figure 2.1. Each of the k

rows above can be written as E[1{x1}(Xℓ)
∏n

j=2 1{xj}(Xj)] by equation (2.5). Because of the

linearity of the expectation, we have

px = E


1
k

k∑
i=1

1{x1}(X1+i×n)︸ ︷︷ ︸
=(∗)k

n∏
j=2

1{xj}(Xj)

 .

Note that (∗)k is either AI1
k if x1 = 1 or 1 − AI1

k if x1 = 0 and that Lemma 2.3.3 guarantees

that as k → ∞, it converges in L2 to Θ or 1 − Θ, respectively. Therefore, the limit can be

written as Θx1(1 − Θ)x1 . As the products of elements in a sequence convergent in L2 and a

bounded RV Z converge in L2 to the product of the limit and Z, by taking k → ∞ we obtain

px = E[Θx1(1 − Θ)1−x1
n∏

j=2
1{xj}(Xj)].

We then successively repeat the argument, replacing X2 by the first k elements in I2, etc.,

shuffling all individual Xi, 1 ≤ i ≤ n, with values of Xi+kn. At the end of this process we

obtain (2.5).

2.5 Application: Polya’s Urn

In this section, we will describe the distribution of the mixing RV Θ for Polya’s urn from

Example 2.1.1. First, we must introduce some notation. Let Pb,w and Eb,w denote the

16



2.5 APPLICATION: POLYA’S URN

Figure 2.1: This figure demonstrates the shuffling taking place for the Xi values of the X
sequence. Here, we see a demonstration of the first two rows of equation (2.6). Within the
arithmetic progression of I1, we may replace X1 with X1+n, or further with X1+2n.

distribution of X when the urn initially contains b ≥ 1 black marbles and w ≥ 1 white

marbles. The reason we do not suppress the dependence on b and w is because we will vary

them.

Before we continue to the details, we introduce two important functions that we will

utilize in the sequel. The Gamma function, Γ, defined on (0, ∞), is given by

Γ(s) =
∫ ∞

0
e−tts−1ds.

Clearly, Γ(1) = 1 and integration by parts gives us the equation

Γ(s + 1) = sΓ(s), s > 0. (2.7)

Note then, that as a result, we have that for any s > 0 and k ∈ N,

s × (s + 1) × · · · × (s + (k − 1)) = Γ(s + 1)
Γ(s) × Γ(s + 2)

Γ(s + 1) × · · · × Γ(s + k)
Γ(s + (k − 1))

= Γ(s + k)
Γ(s) .

(2.8)

Let n ∈ N. Choosing k = n + 1 and s = 1, (2.8) gives Γ(n + 1) = n!. A closely related

function is the Beta function, defined for α, β > 0 as

B(α, β) = Γ(α)Γ(β)
Γ(α + β) . (2.9)

For α, β > 0 and θ ∈ [0, 1], let

fα,β(θ) = θα−1(1 − θ)β−1

B(α, β) . (2.10)
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2.5 APPLICATION: POLYA’S URN

Recall that in Polya’s urn model, the RV Xn is the indicator of the n-th draw being a black

marble.

Theorem 2.5.1. Consider Polya’s urn from Example 2.1.1 that initially contains b black

and w white marbles. Then,

(1) The sequence of RVs, X = (Xn : n ∈ N) is exchangeable.

(2) The mixing random variable, Θ, has a density given by fb,w(θ).

Two comments are in place:

• As part of the proof, we show that for b, w ∈ N, fb,w(·) is a density.

• We will extend the result to a slightly more general version of the model in Section 2.6.

Proof. The proof rests on the following simple observation. Fix b′, w′ ∈ N. Suppose we run

our urn with one marble of each color and sample as follows: the first b′ − 1 samples are black

and the following w′ − 1 samples are white. Therefore, after b′ + w′ − 2 = (b′ − 1) + (w′ − 1)

samples, our urn has a total of b′ + w′ = 1 + (b′ − 1) + 1 + (w′ − 1) marbles, b′ of which are

black and w′ of which are white. Thus, for all samples from the urn from that point onwards,

the sampling will have the same distribution as the sampling under Pb′,w′ . In other words,

the distribution of (Xk : k ≥ b′ + w′ − 1) under P1,1 conditioned on {X1 = · · · = Xb′−1 =

1, Xb′ = · · · = Xb′+w′−2 = 0} is the same as the distribution of X under Pb′,w′ . This simple

observation allows us to reduce all calculations to the case where b = w = 1. In particular,

Eb′,w′ [Θm] = E1,1

Xb′+w′−1 = · · · = Xb′+w′−m−1 = 1

∣∣∣∣∣∣∣∣
X1 = · · · = Xb′−1 = 1

Xb′ = . . . Xb′+w′−1 = 0


= E1,1[Θb′−1+m(1 − Θ)w′−1]

P1,1(X1 = · · · = Xb′−1 = 1, Xb′ = . . . Xb′+w′−1 = 0) . (2.11)

Using (2.1) with b = w = 1, the denominator of (2.11) is given by

P1,1(X1 = · · · = Xb′−1 = 1, Xb′ = . . . Xb′+w′−1 = 0) = (b′ − 1)!(w′ − 1)!
(b′ + w′ − 1)! = Γ(b′)Γ(w′)

Γ(b′ + w′)

= B(b′, w′).
(2.12)
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2.6 GENERALIZATION OF POLYA’S URN

As for the numerator, we first identify the distribution of Θ under P1,1. For m ∈ Z+, we have

E1,1[Θm] = P1,1(X1 = · · · = Xm = 1) = m!
(m + 1)! = 1

m + 1 =
∫ 1

0
θmdθ.

This equality clearly holds for m = 0. Recall that a random variable is uniformly distributed

on [0, 1] if it has a density equal to 1 on [0, 1] and equal to zero elsewhere. As the moments

of Θ determine its distribution and the moments of Θ under P1,1 coincide with those of

a uniformly distributed RV on [0, 1], we conclude that the distribution of Θ under P1,1 is

uniform on [0, 1]. In particular, the numerator of (2.11) is equal to
∫ 1

0 θb′−1+m(1 − θ)w′−1θmdθ.

Using this and (2.12), (2.11) can be rewritten as

Eb′,w′ [Θm] = 1
B(b′, w′)

∫ 1

0
θb′−1(1 − θ)w′−1θmdθ. (2.13)

In view of (2.10), this can be rewritten as

Eb′,w′ [Θm] =
∫ 1

0
θmfb′,w′(θ)dθ, (2.14)

and the equality also holds for m = 0, so fb,w is a density function because it is nonnegative

and integrates to 1. As moments determine the distribution of Θ (see comment below

Theorem 2.2.1), we conclude that under Pb,w, Θ has density fb,w.

2.6 Generalization of Polya’s Urn

In Example 2.1.1 and in the previous Section 2.5, we looked at the case of Polya’s urn where

either a black or white marble is drawn from an urn at random, then put back in the urn

with an additional marble of the same color. Thus, in that model, we were working with

integer-valued b and w as well as C = 1 replacement marbles. Here, we expand upon that

example and look at a case where the three parameters b, w and C are all strictly positive

real numbers. We will construct the model similarly, but instead of thinking of the number of

black or white marbles, we will consider the (not necessarily integer-valued) “quantities” of
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2.6 GENERALIZATION OF POLYA’S URN

black and white “material” in the urn, with the probability of drawing each color in a given

trial being proportional to the quantity of that material present. After each trial, we add to

the urn C amount of the same color material retrieved in that trial, where C again is not

necessarily integer-valued. The RV Xn is defined as the indicator of the n-th trial resulting in

black material being drawn from the urn. Our goal is to prove a generalization of Theorem

2.5.1. We begin with the following result:

Lemma 2.6.1. Let α, β > 0. Then the function fα,β defined in (2.10) is a probability density

on [0, 1].

Proof. We use a simple change of variables formula for double integrals. Write

Γ(α)Γ(β) =
∫ ∞

0
e−t1tα−1

1 dt1

∫ ∞

0
e−t2tβ−1

2 dt2

=
∫ ∞

0

∫ ∞

0
e−(t1+t2)tα−1

1 tβ−1
2 dt1dt2.

We change variables from (t1, t2) to (t = t1 + t2, θ = t1/(t1 + t2)). Clearly, t ∈ (0, ∞). Since

t1 = θt and t2 = (1 − θ)t, the inequalities 0 < t1 < ∞ and 0 < t2 < ∞ are equivalent to

0 < θt < ∞ and 0 < (1 − θ)t < ∞. As 0 < θ < 1, the two inequalities are then equivalent to

0 < t < ∞ and no additional constraint on θ is given. Finally, the Jacobian matrix is

∣∣∣∣∣∣∂J(t1, t2)
∂J(t, θ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
θ t

1 − θ −t

∣∣∣∣∣∣∣∣ = | − t| = t

and so

Γ(α)Γ(β) =
∫ 1

0

∫ ∞

0
e−tθα−1(1 − θ)β−1tα+β−2tdtdθ

=
∫ 1

0
θα−1(1 − θ)β−1dθ

∫ ∞

0
e−ttα+β−1dt

=
∫ 1

0
θα−1(1 − θ)β−1dt × Γ(α + β).

Dividing both sides by Γ(α + β) and using the definition of the Beta function (2.9), we obtain

B(α, β) =
∫ 1

0
θα−1(1 − θ)β−1dθ, (2.15)
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and the result now follows by plugging this into the definition of fα,β, (2.10).

Thus, initially we have an amount of b black material and w white material and the

probability of drawing black is

P (X1 = 1) = b

b + w
.

The probability of the first trial being white is

P (X1 = 0) = w

b + w
.

As before, for x = (x1, . . . , xn) ∈ {0, 1}n, we define bn = ∑n
i=1 xi and, accordingly, wn as

wn = ∑n
i=1(1 − xi). Of course, n = bn + wn. Using this, we define the probability of drawing

black in the (n + 1)-th trial as

P (Xn+1 = 1|Xn = xn, . . . X1 = x1) = b + C × bn

b + w + C × n
.

Likewise, we define the probability of drawing white in that trial as

P (Xn+1 = 0|Xn = xn, . . . , X1 = x1) = w + C × wn

b + w + C × n
.

A derivation identical to the one leading to (2.1) yields the following

P (
n⋂

i=1
{Xi = xi}) =

n∏
k=0

1
b + w + C × k

×
bn∏

k=0
(b + C × k) ×

wn∏
k=0

(w + C × k). (2.16)

To simplify this expression, we introduce some notation. For r, C > 0 and j ∈ N, define

r(C,j) = r(r + C)(r + 2C) · · · (r + (j − 1)C). (2.17)

With this notation, (2.16) can be rewritten as

P (∩n
i=1{Xi = xi}) = b(C,bn)w(C,wn)

(b + w)(C,n) , (2.18)

We have the following generalization of Theorem 2.5.1:

Theorem 2.6.2. Consider the generalized Polya’s urn as described above with parameters
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2.6 GENERALIZATION OF POLYA’S URN

b, w, C ∈ (0, ∞). For each n ∈ N, let Xn be the indicator that the material drawn from the

urn in the n-th trial is black.

(1) The sequence of RVs, X = (Xn : n ∈ N), is exchangeable.

(2) The mixing random variable, Θ, has a density given by fb/C,w/C(θ)

Proof. With n, b, w, C all fixed, the expression for the joint distributions (2.18) is a function

of bn, a quantity invariant under permutations. Thus, X is exchangeable.

Now, consider the following manipulation of the generalized permutation formula presented

in (2.17), wherein we reorganize and regroup the terms so that they align with the equation

of the gamma function:

r(C,j) = Cj r

C

(
r

C
+ 1

)
· · ·

(
r

C
+ j − 1

)
(2.8)= Cj Γ( r

C
+ j)

Γ( r
C

) .

Plugging this expression into (2.18), we obtain

P (∩n
i=1{Xi = xi}) =

Γ( b
C

+ bn)
Γ( b

C
)

×
Γ(w

C
+ wn)

Γ(w
C

) ×
Γ( b+w

C
)

Γ( b+w
C

+ n)

=
B( b

C
+ bn, w

C
+ wn)

B( b
C

, w
C

)
.

We have now represented the joint distributions for the generalized Polya’s urn through the

Beta function. It therefore follows that

E[Θm] =
B( b

C
+ m, w

C
)

B( b
C

, w
C

)
(2.15)=

∫ 1
0 θ

b
C

−1(1 − θ) w
C

−1θmdθ

B( b
C

, w
C

)
(2.13)=

∫ 1

0
θmfb/C,w/C(θ)dθ.

As moments of a random variable taking values in a bounded interval determine its distribution,

we conclude that the density of the mixing random variable Θ is indeed fb/C,w/C , completing

the proof.
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Chapter 3

Model of Biological Evolution

3.1 The Model

In this section we present an application of de Finetti’s theorem in a study of a toy model of

biological evolution which results in a self-similar structure. This model is introduced and

studied in [1] and [9].

Suppose that a population consists of infinitely many sites labeled by the set of positive

integers N. Each site within the population is assigned a “fitness” value, defined here as a

number in [0, 1]. The system evolves in discrete time as follows.

(1) At each unit of time, we sample one environment value and one newly proposed fitness

value for each site within the population.

(a) The proposed fitness values are IID uniform on [0, 1], independent of the past; and

(b) the environment value is a Bernoulli random variable independent of the past and

is of one of two types: “good” with probability p or “bad” with probability 1 − p.

(2) The fitness of each member of the population is then updated to be the maximum or

the minimum between its current fitness and the newly proposed fitness according to

whether the environment is good or bad.
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3.1 THE MODEL

Figure 3.1 provides a visual representation of the evolution dynamics.

Figure 3.1: Here, the integers represent the first five of the infinitely many sites. The
markers in the top row represent the present fitness values and those in the lower row represent
the newly proposed fitness values. If the environment is good, then site 1 will assume the
newly proposed fitness value in the bottom row, site 2 will retain its assigned fitness value in
the top row, and so on, as these values are higher than their alternatives.

Let η = (ηt(n) : t ∈ Z+, n ∈ N) denote the process described above, where ηt(n) ∈ [0, 1]

represents the fitness of the site labeled by n ∈ N at time t ∈ Z+. Then, η0(·) is the initial

assignment of the fitness values and its distribution will therefore be referred to as the initial

distribution of the process. To describe the evolution, let (Ut(n) : t, n ∈ N) be IID uniformly

distributed on [0, 1] and let (Bt : t ∈ N) be IID Bernoulli with parameter p ∈ (0, 1). For each

t ∈ N, we view Bt as the indicator of a good environment at time t and Ut(·) as the proposed

fitness values. With this notation, we have

ηt+1(n) =


max(ηt(n), Ut+1(n)) if Bt+1 = 1

min(ηt(n), Ut+1(n)) if Bt+1 = 0
, (3.1)

which describes the evolution of the sites during the successive trials according to the sampled

random variables. Notably, the evolution at each individual site can be viewed as a Markov

chain and, further, this entire evolutionary process is a system of infinitely many Markov

chains.
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3.2 FIRST OBSERVATIONS

3.2 First Observations

An immediate observation and key to the analysis of the process is the following:

Proposition 3.2.1. Suppose that the initial distribution of η is exchangeable. Then, for

every t ∈ N, (ηt(n) : n ∈ N) is exchangeable.

Proof. Let N ∈ N and let σ be a permutation on {1, . . . , N}. Since both ηt(·) and Ut+1(·)

are exchangeable and independent, a quick calculation shows that the distribution of the

vector (max(ηt(σ(n)), Ut+1(σ(n)) : n = 1, . . . , N) is the same as the distribution of the vector

(max(ηt(n), Ut+1(n)) : n ∈ N). The same holds when taking the minima rather than the

maxima. The result now follows by conditioning on Bt+1.

We now wish to utilize de Finetti’s Theorem on this process, but, to do so, the sequence

must be composed of {0, 1}-valued random variables. To meet this requirement, we impose

the following:

(1) Let u ∈ [0, 1] and let

It(n, u) = 1{ηt(n)≤u}.

We can think of u as a “cut-off” value.

(2) Heuristically, since the labeling of the RVs is arbitrary, the distribution of (It(n, u) :

n ∈ N) is exchangeable and, as such, amenable to de Fintetti’s theorem.

Observe that ηt(n) can be recovered from It(n, ·) through the formula

ηt(n) = sup
u

{It(n, u) = 1}.

Corollary 3.2.2. Suppose that the initial distribution of η is exchangeable. Then, for every

t ∈ N and u ∈ [0, 1],

Θt(u) = lim
n→∞

1
n

n∑
k=1

Ik(n, u)
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3.3 LIMIT RESULT

exists a.s. and, conditioned on Θt(u), the random variables (It(n, u) : n ∈ N) are IID

Bern(Θt(u)).

Proof. For the first statement, use induction. The remaining statements follow from de

Finetti’s theorem, Theorem 2.2.1.

Thus, Θt(u) is the proportion of the population of sites that have a fitness value that is less

than or equal to u at time t, an object whose existence hinges on de Finetti’s theorem. The

corollary also allows us to shift our attention from the “complex” process η to the “simpler”

[0, 1]-valued processes (Θt(u) : t ∈ N). Additionally, we note that for every fixed t ∈ Z+, the

random function u → Θt(u) is:

• Non-decreasing;

• Equal to 0 for u < 0 and equal to 1 for u ≥ 1; and

• Right-continuous (this requires a proof, which we omit).

Therefore, it is a (random) cumulative distribution function, or CDF. In other words, the

function-valued process t → Θt(·) takes it values in the set of cumulative distribution functions

for probability measures supported on [0, 1]. Recall that a CDF gives the probability that a

RV, X, is less than or equal to some value x. In other words, P (X ≤ x).

3.3 Limit Result

For a given site n ∈ N, the evolution of the {0, 1}-valued process (It(n, u) : t ∈ Z+) is obtained

as follows:

(1) If Bt+1 = 1, then

It+1(n, u) = It(n, u)1{Ut+1(n)≤u}. (3.2)
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Indeed, the site’s fitness is updated to the maximum between its current value and the

newly proposed fitness Ut+1(n), and this maximum will be less than or equal to u if

and only if both It(n, u) = 1 and Ut+1(n) ≤ u.

(2) If Bt+1 = 0, then

It+1(n, u) = It(n, u) + (1 − It(n, u))1{Ut+1(n)≤u}. (3.3)

Indeed, the site’s fitness is updated to the minimum between its current fitness value

and the newly proposed fitness Ut+1(n). This minimum will be less than or equal to u

if and only if It(n, u) = 1 or It(n, u) = 0 but Ut+1(n) ≤ u.

We wish to pass from the individual site level dynamics to the bulk. To do that, condition

first on ηt(·) and on Bt+1 = 1, and consider the proportion among those sites n satisfying

It(n, u) = 1 which also satisfy Ut+1(n) ≤ u. As the RVs Ut+1(·) are IID and independent

of both ηt(·) and Bt+1, the law of large numbers tells us that this proportion is u. As the

proportion of sites n satisfying It(n, u) = 1 is by definition Θt(u), it follows from this argument

that in the event that {Bt+1 = 1}, Θt+1(u) = Θt(u)u. This and a similar argument for the

case that Bt+1 = 0 yield

Θt+1(u) =


Θt(u)u Bt+1 = 1

Θt(u) + (1 − Θt(u))u Bt+1 = 0
(3.4)

For fixed u ∈ [0, 1], let S0, S1 : [0, 1] → [0, 1] be the affine mappings S1(x) = ux and

S0(x) = u + (1 − u)x. In words, Θt+1(u) is either S1(Θ(u)) or S0(Θt(u)) chosen according to

whether Bt+1 = 1 or Bt+1 = 0. Let’s write this as an equation:

Θt+1(u) = SBt+1(Θt(u)) =


S1(Θt(u)) Bt+1 = 1

S0(Θt(u)) Bt = 0
(3.5)

In other words, the process t → Θt(u) is obtained as a successive composition of the affine

mappings S0 and S1.
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Recall that a geometric distribution with parameter q counts the number of independent

trials, each with probability q of success, until the first success. We denote this distribution

by Geom(q). Equivalently, G is a Geom(q)-distributed RV if and only if

P (G = k) = (1 − q)k−1q, k ∈ N.

Theorem 3.3.1. [1, Theorem 1, p. 3] Let G0, G1, . . . , Gk be a sequence of IID Geom(1 − p)-

distributed RVs. For k ∈ Z+, let Tk = G0 +G1 + · · ·+Gk. For every u ∈ (0, 1), the distribution

of the random CDF Θt(u) converges to the distribution of the random CDF Θ∞(u) as t → ∞.

This distribution is given below:

Θ∞(u) =
∞∑

k=0
uTk

(1 − u

u

)k

. (3.6)

The process t → Θt(u) is a Markov process. We do not provide a definition of Markov

processes, but heuristically, Markov processes are processes which have no memory: the

distribution of the process in the future conditioned on the past is only a function of the

present state.

Note that the distribution of the limit Θ∞(u), a probability distribution we denote by µu,

is independent of the distribution of Θ0(u), the initial distribution. A stationary distribution

for a Markov process is a probability distribution that is invariant under the dynamics of the

process: when taken as the initial distribution, the distribution at all times remains the same.

As can be easily seen, the convergence result in the theorem implies that µu is in fact the

unique stationary distribution of the process. Indeed, if µ is any stationary distribution and

Θ0(u) is µ-distributed, then for all t ∈ Z+, Θt(u) is µ distributed, but then the convergence

result implies µ = µu.

The fact that our process is obtained through successive compositions of the affine

functions S0 and S1 leads to a self-similar structure of µu which we now explain. Suppose

that Θ0(u) is µu-distributed. What would be the distribution at time 1? The answer is, of

course, µu, but when conditioning on B1 we obtain the following identity. Let I ⊆ [0, 1] be
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an interval. Then,

µu(I) = P (Θ1(u) ∈ I) = P (Θ1(u) ∈ I|B1 = 0)P (B1 = 0) + P (Θ1(u) ∈ I|B1 = 1)P (B1 = 1)
(3.5)= pP (S1(Θ0(u)) ∈ I) + (1 − p)P (S0(Θ0(u)) ∈ I)

= pP (Θ0(u) ∈ S−1
1 (I)) + (1 − p)P (Θ0(u) ∈ S−1

0 (I))

= p(µu ◦ S−1
0 )(I) + (1 − p)(µu ◦ S−1

1 )(I).

To understand what this equation means, recall that the image of S1 is [0, u] and that the

image of S0 is [u, 1]. The intersection of these two intervals is a single point, u, and µu is

a continuous distribution µu({u}) = 0 ([1, Proposition 5]). We will use this below. Fix an

interval B ⊆ [0, 1] and let A0 = S0(B) ⊆ [u, 1] and A1 = S1(B) ⊆ [0, u]. We have

µu(A0) = pµu(S−1
1 (A0)) + (1 − p)µu(S−1

0 (A0))

= 0 + (1 − p)µu(B),

obtained because A0 ⊆ [u, 1] and S−1
1 (A0) ⊆ {u}. After rearrangement, the above equation

reads

µu(B) = 1
1 − p

µu(S0(B)). (3.7)

The probability assigned to B is 1
1−p

times the probability assigned to S0(B) = u+(1−u)B =

{u + (1 − u)b : b ∈ B}, a translation of a dilation of B contained in [u, 1]. Or, for any interval

B, dilating B by (1 − u) then shifting this by u yields an interval whose measure under µu is

1 − p times the measure of B. This can be repeated ad-infinitum. An identical argument

shows that

µu(B) = 1
p

µu(S1(B)) (3.8)

or: the measure of B is 1
p

times the measure of its dilation S1(B) = {ub : b ∈ B}. Again,

this can be repeated ad-infinitum. The bottom line is that (3.7) and (3.8) tell us that µu is

“mirrored,” up to multiplicative constants in a sequence of arbitrarily small intervals obtained

by successive applications of each of the affine functions S0 and S1. This is what self-similarity
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is all about. A special case corresponds to u = p. In this case, (3.7) and (3.8) imply that

the measure of any interval under µu is exactly its length, resulting in µu being the uniform

distribution on [0, 1].

Figure 3.2 provides a visual illustration of self-similarity. Each curve was obtained by

looking at N = 1000 copies of the the process for a fixed value of u at time t = 105, starting

from Θ0(u) = 0 and recording the proportion of those N copies, which at time t did not

exceed the value x for each x ∈ [0, 1]. In other words, each curve is the empirical distribution

of the N copies of Θt(u) we ran, and should be considered as an approximation of the CDF

of µu. This is clearly visible:

• The bottom curve corresponds to p = 1
2 and u = 5

6 and, therefore, (3.8) suggests its

restriction to [0, u] = [0, 5
6 ] is a rescaling of the entire curve with its width multiplied

by 5
6 and its height multiplied by 1 − p = 1

2 , while (3.7) suggests that the restriction of

the same curve to [5
6 , 1] is a shifted and rescaled copy of the entire curve.

• The middle curve corresponds to p = u = 1
2 and, indeed, appears as an approximation

of the CDF of the uniform distribution on [0, 1].
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3.3 LIMIT RESULT

Figure 3.2: The empirical distributions of Θt(u), for p = 1
2 and t = 105. The upper curve

corresponds to u = 1/6, the middle curve to u = 1
2 and the lower curve to u = 5/6. Each

curve was obtained from 1000 copies of the process with Θ0(u) = 0.

31



Bibliography

[1] I. Ben-Ari and R. B. Schinazi. “Self-similarity in an exchangeable site-dynamics model”.
J. Stat. Phys. 188 (2022), Paper No. 17.

[2] P. Billingsley. Probability and measure. Third. Wiley Series in Probability and Math-
ematical Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New
York, 1995, xiv+593.

[3] P. G. Bissiri. “Characterization of the law of a finite exchangeable sequence through
the finite-dimensional distributions of the empirical measure”. Statist. Probab. Lett. 80
(2010), 1306–1312.

[4] R. Durrett. Probability—theory and examples. Fifth. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, Cambridge, 2019, xii+419.

[5] J. F. C. Kingman. “Uses of exchangeability”. Ann. Probability 6 (1978), 183–197.

[6] W. Kirsch. “An elementary proof of de Finetti’s theorem”. Statist. Probab. Lett. 151
(2019), 84–88.

[7] J. W. Lewin. “The Teaching of Mathematics: A Truly Elementary Approach to the
Bounded Convergence Theorem”. Amer. Math. Monthly 93 (1986), 395–397.

[8] H. L. Royden. Real analysis. Third. Macmillan Publishing Company, New York, 1988,
xx+444.

[9] R. B. Schinazi. “Collective evolution under catastrophes”. Amer. Math. Monthly 131
(2024), 48–59.

32


	Abstract
	Table of Contents
	1 Introduction
	1.1 Motivation: Law of Large Numbers (LLN)
	1.2 LLN for Conditional IID
	1.2.1 IID Bernoulli
	1.2.2 Conditional IID Bernoulli


	2 Exchangeability
	2.1 Basic Notions
	2.2 de Finetti's Theorem
	2.3 Convergence Result
	2.4 Proof of de Finetti's Theorem
	2.5 Application: Polya's Urn
	2.6 Generalization of Polya's Urn

	3 Model of Biological Evolution
	3.1 The Model
	3.2 First Observations
	3.3 Limit Result

	Bibliography

