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1 Introduction

The classical fundamental theorem of calculus (FTC) establishes the connection
between to basic operations: differentiation and Riemann integration. It has two
parts.

• The first, FTC I, states that if f ∈ C[a, b], the set of continuous functions
on [a, b], then F (x) =

∫ x

a
f(y)dy is differentiable on [a, b] and its derivative

is f .

• The second, FTC II, states that if F ∈ C1[a, b], the set of functions with
derivative in C[a, b], then in fact F (x)− F (a) =

∫ x

a
F ′(y)dy.

If D is the differentiation operator and I is integration from a, defined on
appropriate domains, then FTC I states that D ◦ I is the identity mapping
on C[a, b], and FTC II states that I ◦ D is the identity on C1[a, b], up to an
addivitive constant (it is the identity on the subspace of C1[a, b] consisting of
functions which are equal to 0 at a).

The FTC is a fundamental tool in analysis as they give us very important
results like the substitution formula and integration by parts. Nevertheless, it
is restricted to integrals of continuous functions (more more generally piecewise
continuous).

In these notes we develop analogous results for Lebesgue integration with
respect to the Lebesgue measure, results which we will also loosely refer to
as FTC I & II. The results, specifically Theorem 2.4 will provide a complete
description of those functions which are integrals of functions in L1 as the set
of absolutely continuous functions.

Before we continue we present the following conventions.

• We write L1[a, b] for L1 with respect to the Lebesgue measure restricted
to the compact interval [a, b].

• The Lebesgue-Stiltjes measure associated with a nondecreasing and right-
continuous function G : [a, b] → R is the measure corresponding to the
extension of G to R obtained by making it constant on (−∞, a] and on
[b,∞). The support of this measure is a subset of [a, b].
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2 The Fundamental Theorem of Calculus

In class, we prove the following through Hardy-Littlewood’s Maximal inequality:

Theorem 2.1 (FTC I). Let f ∈ L1[a, b]. Define F : [a, b] → R through

F (x) =

∫
[a,x]

fdm. (1)

Then F is differentiable m-a.e and F ′ = f m-a.e.

Note that the function F defined in (1) is continuous due to the DCT, and
therefore continuity is a necessary condition for a function F to be of the form
given in (1). As we will show in the next example, continuity is not sufficient.

So what about continuous F? Even differentiability is not enough, as the
following example shows.

Example 1.

F (x) =

{
x

ln(1/x) sin(1/x) x ̸= 0

0 x = 0.

Check that the function F is differentiable on [0, 1]. We show that there is
no f ∈ L1[0, 1] such that (1) holds. We argue by contradiction, assuming (1)
holds. For k = 1, 2, . . . , let xk = 1

2πk , and let yk = 1
2πk+π/2 . Then for all k,

0 < xk+1 < yk < xk < 1. For all k ∈ N, F (xk) = 0 and so

|
∫
[yk,xk]

fdm| = |F (xk)−F (yk)| = | yk
ln(1/yk)

sin(1/yk)| ≥
1

(2πk + 1
2 ) ln(2πk + 1

2 )
.

Therefore

∞ >

∫
[0,1]

|f |dm ≥
∫
∪∞

k=1[yk,xk]

|
∫

fdm| =
∞∑
k=1

1

(2πk + 1
2 ) ln(2πk + 1

2 )
= ∞,

a contradiction.

We now present what we will later show is a sufficient condition for F to be
of the form (1).

Definition 1. Let I ⊆ R be an interval. A function F : I → R is absolutely
continuous if for every ϵ > 0, there exists δ(ϵ) > 0 such that for every N ∈
N and nonoverlapping intervals I1, . . . , IN with Ij having endpoints aj , bj ∈ I

and satisfying m(∪N
j=1Ij) ≤ δ, we have

∑N
j=1 |F (bj) − F (aj)| < ϵ. The set of

absolutely continuous functions on I is denoted by AC(I).

Example 2. 1. Recall that F is Lipschitz if there exists some C ∈ [0,∞) so
that |F (x)− F (y)| ≤ C|x− y|. Clearly, any Lipschitz function on [a, b] is
in AC[a, b], with δ = ϵ

C (if C = 0 any δ will do). Using the Mean Value
Theorem we see that any function which is differentiable with bounded
derivative is Lipschitz.
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2. Another example for absolutely continuous function is the following. Let
f ∈ L1[a, b], and let F (x) =

∫
[a,x]

fdm be the function defined in (1).

Your work in Assignment #3 Problem #3 shows (unknowingly for some
at the time) that F ∈ AC[a, b]. Indeed, you showed the for every ϵ > 0
there exists δ(ϵ) > 0 such that if m(A) < δ, then

∫
A
|f |dm < ϵ. Choosing

A = ∪j=1Ij, where I1, . . . , IN are nonoverlapping intervals, with Ij having

endpoints aj , bj ∈ [a, b], and m(A) =
∑N

j=1 |bj − aj | ≤ δ(ϵ), then

N∑
j=1

|F (bj)−F (aj)| =
N∑
j=1

|
∫
[aj ,bj ]

fdm ≤
N∑
j=1

∫
[aj ,bj ]

|f |dm =

∫
A

|f |dm < ϵ.

FTCII, Theorem 2.4 will show the converse: all functions in AC[a, b] are
obtained through (1).

.

Before we state FTCII we wish to expand a little on properties of absolutely
continuous functions. Recall that for a function f and a subset of its domain
A, we define f(A), the image of A under f , as f(A) = {f(a) : a ∈ A}.

Proposition 2.2. Let F ∈ AC[a, b]. Then for every N ⊆ [a, b], with satisfying
m(N) = 0, m(F (N)) = 0.

Corollary 2.3. Let F ∈ AC[a, b]. Then for every A ∈ L, F (A) ∈ L.

To see why the corollary holds, recall that A = H ∪ N , where H is Fσ

(countable union of closed) and m(N) = 0. Thus, F (A) = F (H)∪F (N). Since
F is continuous is maps compact sets into compact sets. As H is a countable
union of compact sets (closed subsets of [a, b]), F (H), its image under F , is a
countable union of compact sets, hence Fσ. From the proposition F (N) ∈ L.
Therefore F (A) = F (H) ∪ F (N) ∈ L.

Proof of Proposition 2.2. Suppose first that F ∈ AC[a, b], and let N ∈ L satisfy
m(N) = 0. Let ϵ > 0 and let (Ij : j ∈ N) be a disjoint union of (relatively) open
intervals such thatN ⊆ ∪∞

j=1Ij andm(∪∞
j=1Ij) < δ(ϵ), where δ is as in Definition

1. Let aj and bj be the left, respectively right endpoint of Ij . Let xj , yj be points
in [aj , bj ] where the minimum and maximum of F are attained, respectively.
Then F (Ij) ⊆ [F (xj), F (yj)], and so F (N) ⊆ ∪∞

j=1[F (xj), F (yj)]. Moreover,
the countable union of nonoverlapping intervals with endpoints xj and yj , is
contained in ∪∞

j=1Īj (where Ī is the closure of I), which differs from ∪∞
j=1Ij only

on a countable set, and therefore has Lebesgue measure equal to m(∪∞
j=1Ij)

< δ(ϵ) and it follows from the definition now that
∑∞

j=1 |F (yj) − F (xj)| < ϵ.
By since F ⊂ ∪∞

j=1[F (xj), F (yj)] and ϵ > 0, it follows that the outer Lebesgue
measure of F is 0, hence F ∈ L and m(F (N)) = 0.

We are ready to state the main result of this section which also include
Theorem 2.1
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Theorem 2.4 (FTC I & II). Let G : [a, b] → R. Then G ∈ AC[a, b] if and
only if there exists f ∈ L1[a, b] such that G(x)−F (a) =

∫
[a,x]

fdm. In this case,

G′ = f , m-a.e.

We will defer the proof of the theorem to Section 5.

3 Differentiation of Measures

Recall that for x ∈ R and r ≥ 0, Br(x), the ball with center x and radius r is
the open interval (x− r, x+ r). Clearly m(Br(x)) = 2r.

Theorem 3.1. Let λ be a finite Borel measure on R. Then

lim sup
r→0+

λ(Br(x))

2r
= 0, m-a.e.

Corollary 3.2. Let λ be a finite Borel measure on R, and let F (x) = λ((−∞, x]).
Then F ′ = 0 m-a.e.

To see why the Corollary holds, observe that∣∣∣∣F (x+∆x)− F (x)

∆x

∣∣∣∣ ≤ 4
λ(B2|∆x|(x))

4|∆x|
,

and from the theorem, as ∆x → 0 the righthand side tends to 0, m-a.e.

Proof of Theorem 3.1. Let E be such that λ(E) = m(Ec) = 0, and for every
k ∈ N, let

Fk = {x ∈ E : lim sup
r→0+

λ(Br(x))

2r
>

1

k
}.

As {lim supr→0+
λ(Br(x))

2r > 0} = ∪∞
k=1Fk, it is enough to show that m(Fk) = 0

for all k ∈ N.
Because λ is also a Lebesgue-Stiltjes measure, it is regular, and in particular

for every ϵ > 0, there exists an open U with E ⊆ U such that λ(U) < ϵ. For

each x ∈ Fk we pick r(x) ≤ 1 such that
λ(Br(x)(x))

2r(x) > 1
k , and Br(x)(x) ∈ U . Let

(xj : j ∈ N) be the sequence obtained by the application of Vitali’s coverling
lemma to (Br(x)(x) : x ∈ Fk). That is (Br(xj)(xj) : j ∈ N) are disjoint and

m(Fk) ≤ m(∪x∈Fk
Br(x)(x)) ≤ 5m(∪∞

j=1Br(xj)(xj).

However, by choice of r(x), and the fact that the intervals in the sequence are
disjoint, the righthand side is bounded above by

5kλ(∪∞
j=1Br(xj)(xj)) ≤ 5kλ(U) ≤ 5kϵ.

Therefore, m(Fk) ≤ 5kϵ, and as ϵ is arbitrary the result follows.

As an application we have the following:
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Theorem 3.3. Let F : R → R be nondecreasing and let G(x) = F (x+) =
limy↓x F (y). Then

1. G is right continuous.

2. G and F are differentiable m-a.e.

3. G′ = F ′ m-a.e.

Proof. Let x ∈ R and let (xn : n ∈ N) be a sequence of numbers strictly larger
than x, decreasing to x. For each n, G(x) ≤ G(xn+1) ≤ F (xn). Moreover, all
are non-increasing in n and are bounded below by F (x), and therefore have a
limit in R. therefore

G(x) ≤ lim
n→∞

G(xn+1) ≤ lim
n→∞

F (xn) = G(x).

Therefore G is right-continuous.
Fixing any M ∈ N, we can replace F with the bounded right continuous

function FM which is equal to F on [−M,M ] and is constant on each of the
intervals [M,∞) and (−∞,−M ]. Proving the last two statements for FM for
every M clearly implies the corresponding statements for F . Therefore without
loss of generality, for the remainder of the proof we assume that F , hence G, is
bounded.

Since G is non-decreasing, right-continuous and bounded, there exists a fi-
nite LS measure corresponding to G, µG. Specifically, µG((−∞, x]) = G(x) −
G(−∞).

Consider the Lebesgue-Radon-Nikodym decomposition of µG with respect
to m. It gives us a unique f ∈ L1(m), measure λ singular with respect to m
such that for every Borel set A

µG(A) =

∫
A

fdm+ λ(A).

Let G1(x) =
∫
(−∞,x]

fdm and let G2(x) = λ((−∞, x]). Then G(x) =

G1(x)+G2(x) By FTC I, G′
1(x) = f(x) m-a.e. and by Corollary 3.2, G′

2(x) = 0
m-a.e. and therefore G′(x) = f(x) + 0, m-a.e.

To wrap everything up, we will examine the connection between F and
G. Let D be the set of discontinuities of F . As F is nondecreasing, D is
countable. The set of points where F (x) ̸= G(x) = F (x+) is a subset of
D. Note that by definition and monotonicity, for y < x, G(y) ≤ F (x) and
therefore G(x−) ≤ F (x). Thus, for any x ∈ D we have µG({x}) = 0+λ({x}) =
G(x)−G(x−) ≥ G(x)− F (x). Let x,∆x ∈ R. Then∣∣∣∣F (x+∆x)− F (x)

∆x
− G(x+∆x)−G(x)

∆x

∣∣∣∣ ≤ ∣∣∣∣λ({x, x+∆x})
∆x

∣∣∣∣ ≤ 4
λ(B2|∆x|(x))

4|∆x|
.

By Theorem 3.1, the righthand side tends to zero m-a.e. This and the dif-
ferentiability of G m-a.e. imply that F ′ is differentiable m-a.e. and F ′ = G′

m-a.e.
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We close this section with the a decomposition result. We need to introduce
some additional notation. A Borel measure λ is

• Purely atomic if there exists some countable set D such that λ(Dc) = 0.

• Atom-free if for every x ∈ R, λ({x}) = 0.

Any purely atomic measure is a countable (including finite) sum of the form∑
cjδxj , where cj ≥ 0 and xj ∈ R, and δx is the Dirac delta measure δx(A) =

1A(x). As simple examples of atom-free measures, consider the Lebesgue mea-
sure and the LS measure associated with the Cantor function. The support of
the latter is the Cantor set which has Lebesgue measure zero, and therefore the
two measures are singular.

The main result of this section is the following decomposition theorem.

Theorem 3.4. Let G : R → R be non-decreasing, right continuous and bounded.
Let D = {x ∈ R : G(x) > G(x−)}, the (countable) set of discontinuity points of
G and let µG be the LS measure corresponding to G. Then

1. G′ exists m-a.e. and is in L1(m).

2. Let λd be the purely atomic measure λd =
∑

y∈D(G(y)−G(y−))δy. Then
there exists an atom-free measure λc, singular with respect to m such that
for every Borel set A

µG(A) =

∫
A

G′dm+ λc(A) + λd(A).

The theorem provides a decomposition of finite Borel measures on R as
unique sum of three finite measures:

1. A measure λac which is absolutely continuous with respect to m, the LS
measure corresponding to AC function Gac(x) =

∫
(−∞,x]

G′dm.

2. A purely atomic measure λd, the LS measure corresponding to the function
Gd(x) =

∑
y∈(−∞,x]∩D(G(y)−G(y−)).

3. A measure λc, which is both atom-free and singular with respect to m and
which is the LS measure corresponding to the continuous nondecreasing
function Gc = G−Gac −Gd with the property. Moreover, G′

c = 0 m-a.e.

Proposition 3.5. Let G : [a, b] → R be nondecreasing and right-continuous.
Then G ∈ AC[a, b] if and only if the corresponding LS measure µG is absolutely
continuous with respect to m. In this case, dµG

dm = G′, m-a.e.

Proof. Suppose µG ≪ m. By construction: the measures λc and λd in Theorem
3.1 are by definition absolutely continuous with respect to µG, hence also with
respect to m, and singular with respect to m. Therefore λd = λc = 0. In
particular G(x)−G(a) = µG((a, x]) =

∫
(a,x]

G′dm, and Example 2-2 shows that

G ∈ AC[a, b]. Conversely, let G ∈ AC[a, b]. Then since G is continuous, for
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a ≤ α ≤ β ≤ b, we have µG((α, β))) = G(β) − G(α). Now fix ϵ > 0 and let δ
be as in Definition 1. Therefore for any relatively open U ⊆ [a, b], the disjoint
union of intervals with endpoints aj < bj , we have µG(U) ⊆ ∪∞

j=1G(bj)−G(aj).
In particular if ϵ > 0 δ(ϵ) is as in Definition 1, and m(U) < δ, then µG(U) ≤ ϵ.
Let N satisfy m(N) = 0. There exists a decreasing sequence of relatively open
sets (Un : n ∈ N) such that N ⊆ ∩∞

j=1Un, and m(Un) ≤ δ( 1n ). As a result of
continuity from above of finite measures, we have µG(N) ≤ limn→∞ µG(Un) ≤
limn→∞

1
n = 0. Therefore µG ≪ m.

Proof of Theorem 3.1. As shown in the proof of Theorem 3.3, there exists some
measure λ, singular with respect to m so that for every Borel set A

µG(A) =

∫
A

G′dm+ λ(A).

For every x ∈ R, λ({x}) = µG(x) = G(x) − G(x−). In particular and since D
is countable, for any Borel set A,

λ(A ∩D) =
∑

x∈A∩D

λ({x}) = λd(A).

Let λc = λ − λd. That is λc(A) = λ(A ∩ Dc). Then by construction λc ⊥ m.
Finally, if x ∈ D, then λc({x}) = λ(∅) = 0 and if x ∈ Dc, then λc({x}) =
λ({x}) = G(x)−G(x−) = 0.

4 Functions of Bounded Variation

Definition 2. A function F : [a, b] → R is called of bounded variation if there
exists L ∈ [0,∞) such that for every N ∈ N and partition a = x0 < x1 < · · · <
xN = b,

N−1∑
k=0

|F (xk+1)− F (xk)| ≤ L. (2)

The set of functions on [a, b] which are of bounded variation is denoted by
BV [a, b]. The supremum of the lefthandside of (2) over all partitions is called
the total variation of F and is denoted by TF (b).

Any nondecreasing function on [a, b] is of bounded variation, because all the
differences F (xk+1) − F (xk) are nonnrgative and therefore (2) is a telescopic
sum equal to F (b)− F (a).

To continue our developments, we need some additional notation. Let F ∈
BV [a, b], and for every x ∈ [a, b], let TF (x) = TF |[a,x]

. That is TF (x) is the total
variation of the function F , restricted to [a, x]. Clearly, 0 = TF (a) ≤ TF (x) ≤
TF (b).

We have the following fundamental yet simple result.

Proposition 4.1. Let F : [a, b] → R. Then

7



1. The two functions TF (x)± F (x) are non-decreasing, and therefore F is a
difference of two non-decreasing functions.

2. If F is a difference of two non-decreasing functions, then F ∈ BV [a, b].

Proof. Let ∆x > 0. Then

TF (x+∆x) ≥ TF (x) + |F (x+∆x)− F (x)| ≥ TF (x)± (F (x+∆x)− F (x)).

This gives the first statement.
As for the second statement, if F = F1 − F2, where both F1, F2 are non-

decreasing, then the triangle inequality gives that TF (b) ≤ TF1
(x) + TF2

(x) ≤
F1(b)− F1(a) + F2(b)− F1(a) < ∞. and the result follows.

Proposition 4.2. Let F ∈ BV [a, b] and let G(x) = G(x+) = limy↓x F (y).
Then for all x ∈ [a, b], TG(x) ≤ TF (x). In particular, G ∈ BV [a, b].

Proof. Fix any x, and let a = x0 < x1 < · · · < xN = x. Theorem 3.3 gives that
G is right continuous. Fix ϵ > 0. As F by Proposition 4.1 F is a difference of
two nondecreasing functions , it has at mostly countably many discontinuities.
If a partition point xk < b discontinuity point of F , we replace it by a continuity
point of F x′

k satisfying x′
k ∈ (xk, xk+1) and |G(x′

k)−G(xk)| < ϵ/2k. Otherwise
we set x′

k = xk. We then have

TF (x) ≥
N−1∑
k=0

|F (x′
k+1)−F (x′

k)| =
N−1∑
k=0

|G(x′
k+1)−G(x′

k)| ≥
N−1∑
k=1

|G(xk+1)−G(xk)|−2ϵ.

By taking the supremum over all partitions, we have TF (x) ≥ TG(x) − ϵ, and
since ϵ is arbitrary, the result follows.

Proposition 4.3. 1. AC[a, b] ⊂ BV [a, b].

2. G ∈ AC[a, b] if and only if TG(·) ∈ AC[a, b].

Proof. For the first part, let ϵ = 1 and let δ be as in the Definition 1. Note
that it follows from the triangle inequality that the lefthand side of (2) does not
decrease if we add points to the partition. Let K = max{k ∈ Z+ : a+kδ/2 < b}.
Clearly, K ≤ (b− a)/(2δ), and add partition points at a+ kδ/2, k = 0, . . . ,K.
These partition points split [a, b] into at most K +1 subintervals, each of which
is of length bounded above by δ/2. Now use the definition of AC to conclude
that under the refined partition, the lefthand side of (2) is bounded above by
(K+1)∗1. As K is independent of the choice of the partition, the result follows.

As the incremenets of TG are by definition larger or equal to the increments of
G, if TG ∈ AC[a, b], then G ∈ AC[a, b]. For the converse, suppose G ∈ AC[a, b],
fix ϵ/2, and let δ = δ(ϵ/2) be as in the definition (1) for G. Let I1, . . . , IN
be disjoint intervals in [a, b] with

∑N
j=1 m(Ij) < δ, and let aj < bj be the

endpoints of Ij . For each j, pick a partition (xj,k : k = 0, . . . , Nj) aj = xj,0 <
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xj,1 < · · · < xj,Nj
= bj with the property

∑Nj−1
k=1 |G(xj,k+1) − G(xj,k)| ≥

TG(bj)− TG(aj)− ϵ/2j+1. Therefore,

N∑
j=1

|TG(bj)− TG(aj)| ≤ ϵ/2 +

N∑
j=1

Nj−1∑
k=1

|G(xj,k+1)−G(xj,k)|.

The sum on the righthand side is the sum of differences of G over a finite number
of disjoint intervals whose union has measure < δ, and is therefore ≤ ϵ/2, and
we therefore showed that the lefthand side is bounded above by ϵ, completing
the proof.

Next, let G ∈ BV [a, b] be right continuous and bounded (note that we do not
require G to be nonndecreasing) and let µG± be the LS measures corresponding

to the right-continuous and non-decreasing functions TG±G
2 , respectively. Then

clearly µG = µG+
− µG− is a finite signed measure. We have the following.

Theorem 4.4. Let G ∈ BV [a, b] be right-continuous. Then

1. For all x ∈ [a, b], TG(b) ≥
∫
|G′|dm. An equality holds if and only if

G ∈ AC[a, b].

2. µG+ ⊥ µG− .

Proof. As TG(x+∆x)− TG(x)| ≥ |G(x+∆x)−G(x)|, and since both TG and
G are differentiable m-a.e. it immediately follows that T ′

G(x) ≥ |G′(x)| m-a.e.
If µTG

is the LS measure corresponding to TG, then

TG(x) = µTG
((a, x]) ≥

∫
[a,x]

T ′
Gdm ≥

∫
[a,x]

|G′|dm. (3)

This proves the inequality. We turn to the characterization of the equality. As-
sume first that TG(b) =

∫
[a,b]

|G′|dm. Then necessarily TG(x) =
∫
[a,x]

|G′|dm =∫
[a,x]

T ′
Gdm for all x ∈ [a, b]. This implies T ′

G = |G′| m-a.e. and T ′
G ∈ L1[a, b].

Theorem 2.4, gives that TG ∈ AC[a, b]. Proposition 4.3 then implies G ∈
AC[a, b].

Conversely, suppose that G ∈ AC[a, b], which by Theorem 2.4 implies that
for every partition a = x0 < x1 < · · · < xN = b, and every k = 0, . . . , N − 1,
|G(xk+1) − G(xk)| = |

∫
[xk,xk+1]

G′dm|. Now let h : [a, b] → {−1, 1} be the

function equal to 1 on (xk, xk+1) if
∫
[xk,xk+1]

G′dm ≥ 0 and to −1 otherwise.

Set the function to 1 on all remaining points. Then h is a step function (piecewise
constant / constant on intervals), and moreover,

N−1∑
k=0

|G(xk+1)−G(xk)| =
N−1∑
k=0

∫
[xk,xk+1]

G′hdm =

∫
G′hdm.

Letting U be the set of step functions on [a, b] taking values in {−1, 1}, then we
conclude that

TG(b) = sup
h∈U

∫
G′hdm ≤

∫
|G′|dm,
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where the inequality is due to Holder’s inequality for G′ ∈ L1[a, b] and h ∈
L∞[a, b]. Therefore for x = b (equivalently for all x ∈ [a, b]) we have an equality
in (3), and the result follows.

We turn to the second part of the statement. The argument is very similar
to the one presented in the last paragraph. First, observe that the fact that
the incremenets of G are dominated by those of TG implies µG± ≪ µTG

and

let f± = dµG±
dµTG

. In addition, f+ + f− = 1, µTG
-a.e. Then G(x) − G(a) =∫

(a,x]
(f+ − f−)dµTG

, and in particular for any a ≤ x ≤ y ≤ b, |G(y)−G(x)| =
|
∫
(x,y]

f+ − f−dµTG
|. Repeat the argument from the above paragraph with m

replaced by µTG
and G′ replaced by f+ − f−, to conclude that

TG(b) = sup
h∈U

∫
(f+ − f−)hdµTG

≤
∫

|f+ − f−|dµTG
≤

∫
1dµTG

= TG(b).

Therefore we have an equality which in turn implies |f+ − f−| = f+ + f−(=
1) µTG

-a.e. Equivalently, f+f− = 0, µTG
-a.e. Therefore µG−({f+ = 0}c) =

µG−({f− = 0}) = 0. As by construction µG+
({f+ = 0}) = 0, we have µG+

⊥
µG− .

5 Proof of Theorem 2.4

Proof. We begin by assuming that G ∈ AC[a, b]. By Proposition 4.3 G ∈
BV [a, b] and TG(·) ∈ AC[a, b]. As both functions G± = TG±G

2 ∈ AC[a, b], and
are non-decreasing, Proposition 3.5 gives that the respective LS measures µG±

are both absolutely continuous with respect to m with f± =
dµG±
dm =

T ′
G±G′

2 .
As

G(x)−G(a) = µG+((a, x])− µG−((a, x]) =

∫
(a,x]

f+ − f−dm =

∫
[a,x]

G′dm.

The converse was proved as Example 2-2.
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