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Introduction

Why?
> Simplest model involving linear random growth and subcritical branching.

> Interesting behavior initially observed in through simulations (all credit to
Rinaldo).

Process
X =(Xn:n€Z4), a MC with state space Z4+ = {0,1,2...}, representing size of a
population evolving in time.

Starting from population of size i
> w.p. p, population increases by 1; and

> w.p. 1 — p, a binomial catastrophe: each member of population dies with
probability ¢ independently of everything, that is transition to Bin(i,1 — ¢).

1—
Bin(i,1—c) = P i P - i+1

Formula?
' (1_P)(JI‘)(1_C)JC,7J jE{O,...,i}
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First Calculation

Ei[Xe41]Xo, .., Xe] = p(Xe + 1) + (1 = p)(1 — ) Xe
=Xe+p—(1—p)cX:
1—p)c
=X+ p(1 - th)
p
p

o= lim E[X] = ————.
A, (1=p)e

In particular:

» The distributions of {X; : t € Z} are tight, and so

> The process is positive recurrent and “mean reverting” around p = ﬁ.
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Simulation

Simulation: p=0.6, ¢=0.1, Xp=1 Simulation: Empirical distributior
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» The process seems to be nearly stationary oscillating around px = ﬁ =15,
black line.
» The process does not hit 0 at all.
Why?
> The stationary distribution assigns a probability lower than 3 * 105 to 0.

> Process converges to its stationarity distribution very fast. In less than 300 steps
it is closer to 7 than that.

> Bottom line: the O(1) probability of hitting 0 from “low” populations quickly
changes to o(1) from “typical” populations.
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The Stationary distribution

Shifted Geometric
We say that G ~ Geom™ (p) if

P(G=g)=(1—p)p, g=0,1,2,....
Observation: G ~ Geom™ (p) and | ~ Ber(1 — p) independent. Then /(G + 1) ~ G.
Idea

» Suppose the number of individuals not experiencing a catastrophe yet is Gp.

> After one step this number will be /(Gg + 1), where is an independent
| ~ Bern(p).

» Due to observation: stationary if G ~ Geom™ (1 — p).

Summary

Let Go, Gi,... be IID ~ Geom™ (1 — p). The stationary distribution 7 is the
independent sum of

P Gy individuals who have not experienced a single catastrophe.
Bin(Gi,1 — ¢) - survived exactly one catastrophe

>
> Bin(Gy, (1 — ¢)?) - survived exactly two catastrophes.
>
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Convergence

Total Variation

» The total variation metric between probability measures Q1, @, on Z is defined

as
1
1@ = Qll7v = max Qi(A) = @2(A) = 5 37 1Qi(x) — Qa(x)-
+ XELy
» Write:
de(p, 1) = [|Pu(Xe € -) = P (Xe € )l 7v-
Coupling

> A process (X, X’) consisting of two copies of the RW with initial distributions
py ', resp.

> The coupling time, Tcoup = inf{t : X = X/}.

> Write P, s for the law of (X, X’).

Aldous Inequality

dt(“v M,) < P,u,u’(Tcoup > t)-
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Our Coupling

The construction
» We assume g = Ox, 1’ = 8, with 0 < x < x'.
» Simplest possible:

P> Up: together.
P Catastrophe: all individuals survive independently.

» Transitions

Bin(i,1 — c) + (0, Bin(i’ — i,1 — ¢)) ~——— (i,/') =2 (i+ 1,7 +1)
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Our Coupling

The construction
» We assume g = Ox, 1’ = 8, with 0 < x < x'.
» Simplest possible:

P> Up: together.
P Catastrophe: all individuals survive independently.

» Transitions

1-—
Bin(i,1 — c) + (0, Bin(i’ — i,1 — ¢)) ~——— (i,/') =2 (i+ 1,7 +1)

Summary

» The difference Ay = X/ — Xt is non-increasing and can only change after a
catastrophe, each surviving with probability 1 — ¢, independently of others.

» The number of catastrophes up to time t, Nt ~ Bin(t,1 — p).
> P, (Ar € |Nt) ~ Bin(x' — x, (1 — c)™).

> {Teoup > t} = {Ar > 0} = {Bin(x’ — x, (1 — c)¥*) > 0}.

> = P (Teowp > t) = 1 — E[(1 — (1 — o)) =]



Upper bound through coupling

Recall,
de(x, x") < Pyt (Teoup > t) = 1= E[(1 = (1 = &)V )* 7],

Let
a=1-c¢c(1-p).

Upper bound

With some calculus,

Proposition 1
Suppose 0 < x < x’. Then

di(x,x") < (X' — x)at.

and

Corollary 1
L de(x,m) < (x =+ 25, (v = x)m(y)) at; and
2. di(0,7) < pat



10/19

Lower Bound

Notation
» Recalla =1—¢(1—p)
) P
Pletp=—=——7—.
tPE 1—c(1-p)

» Write P.p,7r5, for the respective quantities with parameters (j, c¢) instead of (p, ¢)

The bound

» From Proposition 1, di(x,x’) < (x’ — x)at.

Theorem 1
Let 0 < x < x'. Then

x'—1

di(x,x") > af max PP(X: = j).
(0x) 2 o pax 3 PR =)

Upper and lower bounds give

Corollary 2
5 d ! d !
max 7P (j) < liminf M < limsup M <
J t—oo (x! — x)at t—oo (X' — x)at
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Lower bound - Strategy

Goal
x'—1 .
de(x,x') > ot ma PP(X; = j).
t(XX)faj!'gZi(kZ:; k(t J)
Stages

Here's our plan
|. Getting the sum.
Il. Getting the change of parameter.

1
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Lower bound - I. Sum

Write I; = {0,...,j}, j € Z1. Then

di(x,x") > Px(Xt € [}) = Pu (Xt € I))

Explanation
From definition of total variation, d¢(x,x’) = maxacz, Px(X: € A) — Py (Xt € A)
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Lower bound - I. Sum

Write I; = {0,...,j}, j € Z4. Then

dr(x,x") = Px(Xt € [}) = P (Xt € 1)
x'—1

= D" Pu(Xe € 1) = Peya(Xe € 1)
k=x

Explanation
Telescoping over all k from x to x’
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Lower bound - I. Sum

Write I; = {0,...,j}, j € Zy. Then

d(x,x") > Pe(X: € Ij) — P (Xe € I})

’

x =1
=D PuXe € 1)) = Pisa(Xe € 1)
k:)("—/ N——
(%) (%)
x'—1

= > Bl (Xe) — 1,(X0)]
k=x —— =
() ()

Explanation
Expressing in terms of our coupling
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Lower bound - I. Sum

Write I; = {0,...,j}, j € Z4. Then

de(x,x") > Px(Xe € ;) = P (Xt € )

’

X
|
-

Pe(Xt € I}) = Peya(Xe € 1))

I
lng

X\
|
-

I
(]

Ep k1 [15(Xe) — 15,(X))]

-~ X
Il
X

X
|
—

Eikr1[1(Xe) = 15,(X{), Ae = 1]

x
Il
X

Explanation
At € {0,1}, and the indicators are equal on {A; = 0}



12/19

Lower bound - I. Sum

Write [; = {0,...,j}, j € Z1. Then

dt(XX)>PX(Xt€/)— (Xtel)

= Z Pe(Xe € ;) = Pia(Xe € 1))
x'—1

=D Bl (Xe) = 1,(X))]
k=x

/-1
Z Eikr1[1,(Xe) — 15(X7), Ae = 1]

X
k=x

Continued on next slide...
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Lower bound - |. Sum, continued

We showed

x'—1

de(x,x") > > Eraa[ly(Xe) = 15,(X(), Ae = 1]
k=x
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Lower bound - |. Sum, continued

We showed

x' =1

Er 1 [1(Xe) = 1,(X), A = 1]

g

dt(val) 2

X

- X
Il

-1

X

—Pri1(X{ =0,Ae = 1) + P 1 (X{ =j+1,0: = 1)

x

=x

Explanation
On {A; = 1}, black - solid blue = dashed blue - solid blue
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Lower bound - |. Sum, continued
We showed
x'—1
de(x,x") > > Ersa[1y(Xe) — 15(X(), Ae = 1]
k=x
x'—1
= —Prir1(X{ =0,Ar = 1) + P 1 (X =j+1,8: = 1)
k=x
(*) (%)
x'—1
=0+ Z Prri1(Xe = j, Ar = 1)
k=x

()

Explanation
On {Ar=1}, X[ =Xt +1>0.
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Lower bound - |. Sum, continued

We showed
x'—1
de(x,x') > D Epa[Lp(Xe) = 1(X]), Ar = 1]
k=x
x'—1
= —Pris1(X{ =0,Ae = 1) + P 1 (X =j+1,8: = 1)
k=x

x' =1
=04+ > Prxa(Xe =j,Ac=1)

k=x
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Lower bound - |. Sum, continued

Lower bound - |. Sum, conclusion

Lemma 2
Suppose 0 < x < x'.

x' =1

de(x,x") > nax > " Proir1(Xe =J, B = 1). (2)
+
k=x

Note:
» Coupling (normally used for upper bound) is part of statement through A;.
» Argument works for any MC on Z4 and coupling with 1 = Ag > A; > ...
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Lower Bound - Il. Parameter change, reminder

x'—1

» Last lemma dt(x,x’) > _m%X Z Pk,k+1(Xt =j,Ar=1)
JEZ+
k=x
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Lower Bound - Il. Parameter change, reminder
x'—1
> Last lemma de(x,x") > max Z‘ Piks1(Xe = j,Ar = 1) ‘
JEeLt
k=x

> Will show parameter change
I

atPP(X: = j)
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Lower Bound - Il. Parameter change, reminder
> x'—1
Last lemma di(x,x") > max Z Pi ki1 (Xe = j, Ae = 1)
» Will show parameter change J€8+ =

» = proof of Theorem 1 is [J Il
atPP(X: = j)
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Lower Bound - Il. Parameter change, reminder
x'—1
> Last lemma de(x,x") > max D Prka(Xe =j, Ar = 1)
» Will show parameter change J€8+ =

» = proof of Theorem 1 is [J Il

atPP(X: = j)
Time to derive...
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Lower bound - Il. Parameter change

» Condition on N, number of catastrohes up to time t:
Pik+1(Xe = j, Bt = 1Nt = n) = Py k1(Xe = j|Nt = n) Py jop1(Ar = 1|Ny = n)
= Pip1(Xe = jIN:t = n)(1 = )" (3)

Because, conditioned on N;

P> X; and A; are independent, and
> (A¢|N¢ = n) ~ Bern(1 — ¢)".
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Lower bound - Il. Parameter change

» Condition on N¢, number of catastrohes up to time t:

Pik+1(Xe = j, At = 1Nt = n) = Py k1(Xe = j|Ne = n)Py joy1(Ar = 1| Ny = n)
= Pikr1(Xe = jINe = n)(1 - ¢)" (3)

> Multiply by P(N: = n):

) 3 )
P kr1(Xe = j, At = 1, Nt = n) @ Py k+1(Xe = j|Nt = n)(1 — ¢)"P(N¢ = n)
(4)
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Lower bound - Il. Parameter change

» Condition on N¢, number of catastrohes up to time t:
Pii+1(Xe = j, At = 1Nt = n) = Py k1(Xe = j|Nt = n)Py jop1(Ar = 1[Ny = n)
= Py 1(Xe = jINe = n)(1 - ¢)" (3)
> Multiply by P(N: = n):
. 3 .
P i+1(Xe = j, Ay = 1, Ny = n) ) Pi k+1(Xe = jINe = n)(1 — c)"P(Ne = n)
(4)
» Change parameter:
(1= ¢)"P(N;: = n) = o' P(Bin(t, ) = n) = a! PP(N; = n). (5)

Because change of measure formula from binomial with success parameter p to p
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Lower bound - Il. Parameter change

» Condition on N¢, number of catastrohes up to time t:
Pi+1(Xe = j, Ae = 1Nt = n) = Py g1(Xe = jINe = n) Py g11(Ar = 1[Ny = n)
= Pir1(Xe = jINe = n)(1 - ¢)" (3)
> Multiply by P(N¢ = n):
. 3 .
Prrr(Xe = js e = 1,Ne = n) 2 Py yoy1 (Xe = jIN: = n)(1 = ¢)"P(Ne = n)
(4)
» Change parameter:
(1 —¢)"P(Ny = n) = o' P(Bin(t, p) = n) = atPﬁ(Nt =n). (5)

» Putting it all together

Pisp1(Xe =j, Be =1) = Y Pijs1(Xe =, Ar = 1, Ny = n)
n€Zy

CLS™ Pu(Xe = jINe = n)at PA(N; = n)
n€Zy

= atPP(X; = ).

Raratica +ha Aickrilkiitian ~f (Y. N ic indanmandant Af +he narameatrar m
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Lower bound - Il. Parameter change

» Condition on N¢, number of catastrohes up to time t:

P ks1(Xe = j, At = 1INt = n) = Py k11(Xe = j|Nt = n)Py yy1(At = 1[Nt = n)
= Pikr1(Xe = jINe = n)(1 - ¢)" (3)

> Multiply by P(N: = n):
Pi1(Xe = j, Ar = 1, Ny = n) e Pier1(Xe = jIN: = n)(1 — c)"P(N¢ = n)
4)
» Change parameter:
(1 = ¢)"P(Ny = n) = o' P(Bin(t, ) = n) = ! PP(N; = n). (5)
» Putting it all together

Piss1(Xe = j, Ar = 1) = o' PP(Xe = j).
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Poisson Limit

Assumption

pn—0
2y e (0,00) )

In the sequel, we write P.(")7 7, d.(")(-, -) for the respective quantities.
Limit Process

Theorem 3
Assume (%). Then the family of rescaled processes YS(") = X|s/c,]» S € Ry, converges
in distribution to a continuous-time Markov chain on Z with rates:

B y=x+1
Ax,y)=¢x x>0, y=x-—1
0 otherwise

Corollary 3
Under (%),
7" = Pois(B),

the stationary distribution of the limit chain.
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Cutoff

What is cutoff?
We say that the family of TFs and initial distributions u, exhibits a cutoff at t, with
window wj, if there exists a sequence t, — oo and w, = o(ts) such that for a > 0,

Cutoff

> d"  (,m(M) 1.

th—awy

» d(”)

e+ own (en, 71'(”)) — 0. .
A sharp transition from being ‘“or-
thogonal” to stationary distribu-

tion to being stationary.

Examples for Cutoff
Usually families of finite-state reversible chains.
» Lazy RW on the n-dimensional hypercube.
> RWs on {0,...,n} with constant drift to the right.

More? Slides by David Levin https://pages.uoregon.edu/dlevin/ TALKS /durham.pdf


https://pages.uoregon.edu/dlevin/TALKS/durham.pdf

Our cutoff results

Recall (x): pn — 0 and pn/cs — 8, so ©(" — Pois(8).

Theorem 4
Suppose that y, — co. Let t, = '"Ci Then for every € > 0,
n

1. I|m infb t(")(y,,,ﬂ(")) =1, where

—o0 t<t,
1 Inlny,
bn:(1+e)(§|nyn+nny).

Cn

2. lim limsup sup dﬁ")(ynmr("))zo-

e—=0+ p—oo t>t,,+i
In other words, a cutoff at time t, = In y,/c, with window O(max(In yn, l"'" YY),

Why y, — o0?
Otherwise, do(yn, 7(") = ||8,, — 7("|| 1y is uniformly < 1, so part 1 cannot hold true.



Fim. Obrigado!



